群機(jī)器人隊(duì)形形成方法的研究
本文選題:群機(jī)器人系統(tǒng) 切入點(diǎn):編隊(duì) 出處:《遼寧科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著任務(wù)的復(fù)雜性及其所處環(huán)境未知性、多變性的增加,單個(gè)機(jī)器人因其自身性能及可靠性等諸多因素而產(chǎn)生的局限性愈發(fā)突出,具有穩(wěn)健性、自修復(fù)能力和自適應(yīng)性等優(yōu)點(diǎn)的自組織群機(jī)器人系統(tǒng)獲得廣泛關(guān)注。群機(jī)器人的隊(duì)形控制問題作為解決群體機(jī)器人協(xié)調(diào)合作問題的基礎(chǔ),具有很大的研究價(jià)值。依據(jù)問題解決過程的不同,群機(jī)器人的編隊(duì)問題可分成隊(duì)形形成問題和隊(duì)形保持問題,而隊(duì)形保持問題又可以視為實(shí)時(shí)的隊(duì)形形成問題,因此研究編隊(duì)問題的首要問題就是隊(duì)形形成問題。隊(duì)形形成問題又可分解為兩個(gè)必須解決的重要問題:在面對(duì)多個(gè)可供選擇的目標(biāo)節(jié)點(diǎn)時(shí),機(jī)器人應(yīng)以什么方式選擇自己對(duì)應(yīng)的目標(biāo)節(jié)點(diǎn);在形成隊(duì)形過程中,如何避免與其它機(jī)器人發(fā)生沖突。本文是在有界的二維平面內(nèi),機(jī)器人隨機(jī)分布的情況下,從上述兩個(gè)問題入手解決群機(jī)器人的編隊(duì)問題。第一個(gè)問題的核心在于給各機(jī)器人選擇合理的對(duì)應(yīng)目標(biāo)節(jié)點(diǎn),對(duì)此本文提出了一種自組織確定各機(jī)器人目標(biāo)節(jié)點(diǎn)的新方法——人工社會(huì)職位法,該方法借鑒了人類在社會(huì)中求職的思想,群機(jī)器人根據(jù)實(shí)時(shí)探測到的環(huán)境信息,經(jīng)過協(xié)商自組織的依據(jù)人工社會(huì)職位法的三個(gè)規(guī)則更換目標(biāo)節(jié)點(diǎn),直至機(jī)器人們擁有不同于彼此的目標(biāo)節(jié)點(diǎn),從而有效、有序、合理的形成目標(biāo)隊(duì)形。第二個(gè)問題是機(jī)器人的運(yùn)動(dòng)規(guī)劃問題(即運(yùn)動(dòng)控制器的設(shè)計(jì)問題),本文依據(jù)群機(jī)器人系統(tǒng)模型的特點(diǎn),采用人工力矩控制器驅(qū)動(dòng)機(jī)器人運(yùn)動(dòng),該控制器的工作原理是:在獲取到機(jī)器人初始位置和目標(biāo)位置的信息后,運(yùn)用人工力矩控制法,輸出轉(zhuǎn)向,驅(qū)動(dòng)機(jī)器人到達(dá)目標(biāo)位置。通過matlab仿真平臺(tái)驗(yàn)證了本文提出方法是可行且有效的。
[Abstract]:With the complexity of the task, the unknown environment and the increase of variability, the limitations of a single robot due to its own performance and reliability become more and more prominent and robust. Self-organizing swarm robot systems, which have the advantages of self-repairing ability and self-adaptability, have attracted much attention. The formation control problem of swarm robots is the basis of solving the problem of coordination and cooperation of swarm robots. The formation problem of robots can be divided into formation formation problem and formation maintenance problem, and the formation maintenance problem can be regarded as a real-time formation formation problem. Therefore, the formation formation problem is the most important problem in the study of formation formation, which can be divided into two important problems that must be solved: in the face of multiple optional target nodes, the formation formation problem can be divided into two important problems: one is the formation formation problem, and the other is the formation formation problem. In what way should the robot choose its corresponding target nodes, and how to avoid conflicts with other robots in the formation process. In this paper, the robot is randomly distributed in a bounded two-dimensional plane. Starting with the above two problems, the formation problem of swarm robots is solved. The core of the first problem is to select reasonable corresponding target nodes for each robot. In this paper, a new self-organizing method to determine the target nodes of each robot, artificial social position method, is proposed. The method draws lessons from the idea of human job-seeking in society, and the swarm robot detects the environmental information in real time. After negotiating the three rules of the artificial social position approach, the target nodes are replaced until the robots have different target nodes from each other, so that they are effective and orderly. The second problem is the motion planning of the robot (that is, the design of the motion controller). According to the characteristics of the swarm robot system model, this paper uses the artificial torque controller to drive the robot motion. The working principle of the controller is: after obtaining the information of the initial position and the target position of the robot, the manual torque control method is used to output the steering. The method proposed in this paper is proved to be feasible and effective by matlab simulation platform.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 祝超超;徐望寶;榮根熙;;多機(jī)器人圍捕的人工力矩方法[J];遼寧科技大學(xué)學(xué)報(bào);2015年06期
2 倪自強(qiáng);王田苗;劉達(dá);;醫(yī)療機(jī)器人技術(shù)發(fā)展綜述[J];機(jī)械工程學(xué)報(bào);2015年13期
3 任立敏;王偉東;杜志江;;移動(dòng)機(jī)器人隊(duì)形控制關(guān)鍵技術(shù)及其進(jìn)展[J];智能系統(tǒng)學(xué)報(bào);2013年05期
4 徐望寶;陳雪波;趙杰;;個(gè)體機(jī)器人局部路徑規(guī)劃的人工力矩方法[J];大連理工大學(xué)學(xué)報(bào);2012年03期
5 徐望寶;陳雪波;;一種基于人工力矩的動(dòng)態(tài)隊(duì)形控制方法[J];控制理論與應(yīng)用;2009年11期
6 熊燕華;;對(duì)國內(nèi)求解指派問題的匈牙利法改進(jìn)的評(píng)述[J];中國制造業(yè)信息化;2009年21期
7 李波;王祥鳳;;基于動(dòng)態(tài)Leader多機(jī)器人隊(duì)形控制[J];長春工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
8 熊舉峰;;群機(jī)器人學(xué)[J];計(jì)算機(jī)工程與應(yīng)用;2008年31期
9 徐望寶;陳雪波;;組群機(jī)器人隊(duì)形控制的人工力矩法[J];中國科學(xué)(E輯:信息科學(xué));2008年08期
10 薛頌東;曾建潮;;群機(jī)器人研究綜述[J];模式識(shí)別與人工智能;2008年02期
相關(guān)博士學(xué)位論文 前2條
1 徐望寶;移動(dòng)機(jī)器人局部路徑規(guī)劃的人工力矩方法[D];大連理工大學(xué);2014年
2 任立敏;未知環(huán)境下多移動(dòng)機(jī)器人編隊(duì)控制及協(xié)作搬運(yùn)策略研究[D];哈爾濱工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前4條
1 榮根熙;群機(jī)器人復(fù)雜搬運(yùn)隊(duì)形形成方法的研究[D];遼寧科技大學(xué);2016年
2 柴銳之;多機(jī)器人編隊(duì)的運(yùn)動(dòng)規(guī)劃[D];上海交通大學(xué);2013年
3 諶海燕;基于群體智能的群機(jī)器人編隊(duì)技術(shù)研究[D];太原科技大學(xué);2009年
4 陳偉;多移動(dòng)機(jī)器人協(xié)調(diào)避碰及編隊(duì)問題研究[D];哈爾濱工程大學(xué);2003年
,本文編號(hào):1649268
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1649268.html