基于指數(shù)積的youbot機械臂運動學(xué)參數(shù)辨識研究
發(fā)布時間:2018-03-17 01:34
本文選題:運動學(xué)標(biāo)定 切入點:三維掃描儀 出處:《南京郵電大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著科技的進步與信息社會的發(fā)展,在航空、醫(yī)藥以及電子產(chǎn)品制造等領(lǐng)域,機器人發(fā)揮著重要的作用。在工業(yè)生產(chǎn)制造過程中,機器人較高的精度決定了工藝產(chǎn)品的成色。機器人作為生產(chǎn)的主體,受到環(huán)境變化、裝配形變、齒輪傳動、機械磨損等各種因素的影響,導(dǎo)致機器人的內(nèi)部幾何名義參數(shù)不能精確地表達機器人執(zhí)行器末端實際位姿與各個關(guān)節(jié)之間的關(guān)系。因此,需要對機器人的運動學(xué)參數(shù)進行定期標(biāo)定。如今,市場上所建立的機器人模型主要運用D-H模型標(biāo)定方法,雖然此方法較容易實現(xiàn),但是D-H模型不具備完整性、連續(xù)性、參數(shù)極小性的特點,極大地影響了機器人作業(yè)的性能;同時,在進行運動學(xué)參數(shù)辨識時,也制約了參數(shù)標(biāo)定方法的實現(xiàn)與應(yīng)用。本文基于旋量理論,描述機器人運動特性。所采用的指數(shù)積建模方法能夠很好地克服這些缺點。因此,本文依托南京郵電大學(xué)機器人實驗室內(nèi)的Kuka-Youbot機器人作為研究對象,深入研究機器人誤差分布問題,并對機器人誤差源進行標(biāo)定與補償。本文取得的主要成果如下:1.首先,應(yīng)用李代數(shù)、旋量理論描述了機械臂的運動學(xué)關(guān)系,針對五自由度關(guān)節(jié)型機器人運動學(xué)特性,建立了全局指數(shù)積、局部指數(shù)積和改進指數(shù)積的運動學(xué)誤差模型。2.針對機器人運動學(xué)誤差分布,采用全局指數(shù)積、局部指數(shù)積和改進指數(shù)積進行機器人運動學(xué)建模。隨后基于運動學(xué)關(guān)系,給出了機器人雅克比矩陣,并且通過仿真軟件Matlab進行了數(shù)值仿真,分析了一階線性誤差成分以及二階誤差成分的影響。3.基于傳統(tǒng)參數(shù)標(biāo)定方法,利用指數(shù)積運動學(xué)模型,建立了相應(yīng)的齊次變換誤差模型,并且采用空間兩點之間的距離誤差描述機器人執(zhí)行器末端的絕對定位精度,給出了基于指數(shù)積運動學(xué)模型的距離誤差標(biāo)定模型。在辨識過程中發(fā)現(xiàn)雅克比矩陣出現(xiàn)奇異現(xiàn)象,采用QR分解以及施密特正交法對冗余參數(shù)進行修正,最終實現(xiàn)所有參數(shù)的辨識。4.在課題實驗部分,測量設(shè)備選用天遠三維掃描儀。測量精度達到0.02毫米,確保數(shù)據(jù)采集的精確度,并能對標(biāo)定前后的機器人末端位姿進行對比分析。在實驗的過程中,三維掃描儀單次測量范圍較小,需要多次測量拼接數(shù)據(jù),才能充分表達機器人末端點相對于機器人基坐標(biāo)系的空間位置信息,再將采集到機器人位姿信息加入到距離誤差模型中進行辨識。最后針對Kuka-Youbot這一型號機器人,應(yīng)用改進的距離誤差方法進行了標(biāo)定實驗,結(jié)果顯示采用改進的POE標(biāo)定辨識方法使得機器人末端的距離誤差大幅降低,同時機器人絕對位置精度明顯提高,標(biāo)定后的Kuka-Youbot機器人到位精度完全能夠到達工業(yè)要求。
[Abstract]:With the progress of science and technology and the development of information society, robots play an important role in the fields of aviation, medicine and electronic products. The higher precision of the robot determines the color of the technological product. As the main body of production, the robot is affected by various factors, such as environment change, assembly deformation, gear transmission, mechanical wear and so on. As a result, the internal geometric nominal parameters of the robot cannot accurately express the relationship between the actual position and pose of the end of the robot actuator and the joints. Therefore, the kinematics parameters of the robot need to be calibrated on a regular basis. D-H model calibration method is mainly used in the market. Although this method is easy to realize, the D-H model does not have the characteristics of integrity, continuity and minimal parameters, which greatly affects the performance of robot operation. At the same time, it also restricts the realization and application of parameter calibration method in kinematic parameter identification. Based on spinor theory, this paper describes the kinematic characteristics of robot. The exponential product modeling method used in this paper can overcome these shortcomings very well. Based on the Kuka-Youbot robot in the robotics laboratory of Nanjing University of posts and Telecommunications, the problem of robot error distribution is deeply studied, and the error source of robot is calibrated and compensated. The main achievements of this paper are as follows: 1. The kinematics relationship of the manipulator is described by using lie algebra and spinor theory. The global exponential product is established for the kinematics characteristics of a five-degree-of-freedom robot. The kinematics error model of local exponential product and improved exponential product. 2. According to the kinematics error distribution of robot, global exponential product, local exponential product and improved exponential product are used to model the kinematics of robot. The Jacobian matrix of the robot is given, and the numerical simulation is carried out by the simulation software Matlab. The influence of the first order linear error component and the second order error component is analyzed. 3. Based on the traditional parameter calibration method, the exponential product kinematics model is used. The corresponding homogeneous transformation error model is established, and the distance error between two points in space is used to describe the absolute positioning accuracy of the end of the robot actuator. The distance error calibration model based on exponential product kinematics model is presented. The singularity of Jacobian matrix is found in the identification process. The QR decomposition and Schmitt orthogonal method are used to modify the redundant parameters. Finally, the identification of all the parameters. 4. In the experiment part of the subject, the measuring equipment adopts the Tianyuan 3D scanner. The measuring precision reaches 0.02 mm to ensure the accuracy of the data acquisition. In the process of experiment, the single measurement range of 3D scanner is relatively small, and the splicing data need to be measured several times. In order to fully express the space position information of the end point of the robot relative to the robot base coordinate system, the position and attitude information of the robot is added to the distance error model to identify the robot. Finally, aiming at the model of Kuka-Youbot robot, The calibration experiment is carried out by using the improved distance error method. The results show that the distance error at the end of the robot is greatly reduced by using the improved POE calibration identification method, and the absolute position accuracy of the robot is obviously improved. The precision of the calibrated Kuka-Youbot robot can reach the requirements of industry.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【相似文獻】
相關(guān)期刊論文 前10條
1 宗光華;畢樹生;王巍;李大寨;;機器人技術(shù)開拓未來——2005年國際機器人展(日本)巡禮[J];機器人技術(shù)與應(yīng)用;2006年01期
2 陳林;奚如如;王興松;;套索驅(qū)動細長機器人的初步設(shè)計與試驗[J];機電工程;2011年03期
3 謝芝馨;;蘇聯(lián)機器人技術(shù)述評[J];機械與電子;1989年04期
4 羅飛,,余達太;主動式控制──機器人抑振控制的有效方式[J];機器人;1995年04期
5 盧桂章;當(dāng)前高技術(shù)發(fā)展的前沿——機器人技術(shù)[J];天津科技;1995年01期
6 蘇陸;日本機器人技術(shù)與產(chǎn)品[J];全球科技經(jīng)濟w
本文編號:1622595
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1622595.html
最近更新
教材專著