干涉型光纖傳感器及其準(zhǔn)分布式傳感研究
本文選題:地震波探測 切入點(diǎn):干涉型光纖傳感器 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:"高分辨率光纖油氣層監(jiān)測系統(tǒng)"(High-reso1utionFiber-opticSeismicSystem,HR-FOSS)是以光纖加速度傳感器陣列為基礎(chǔ)的新一代地震波探測系統(tǒng),用于油田油氣層結(jié)構(gòu)和遷移的高精度實(shí)時探測。HR-FOSS技術(shù)將逐步取代傳統(tǒng)技術(shù)成為石油探采和生產(chǎn)的配套設(shè)備,是目前幾個石油探懫大國的研究熱點(diǎn),是未來幾年石油探采的趨勢和方向。本論文研制了一個小規(guī)模HR-FOSS樣機(jī)系統(tǒng),為今后對商用化高分辨率光纖油氣層監(jiān)測系統(tǒng)的研制奠定技術(shù)及工藝基礎(chǔ)。除了檢波器數(shù)量為64個外,小規(guī)模HR-FOSS的其他技術(shù)要求與大規(guī)模系統(tǒng)基本一致,包括了多波長激光光源模塊、光學(xué)調(diào)制解調(diào)模塊、光學(xué)傳感模塊、數(shù)據(jù)處理模塊、系統(tǒng)控制電腦和系統(tǒng)電源模塊6個模塊。在整個系統(tǒng)中,本文主要設(shè)計(jì)并制作了光學(xué)調(diào)制解調(diào)模塊和光學(xué)傳感模塊,研究了離散式相位調(diào)制解調(diào)法和一種波分時分混合復(fù)用技術(shù)。研究了傳統(tǒng)石油數(shù)據(jù)與本系統(tǒng)輸出數(shù)據(jù)差異,設(shè)計(jì)并編寫了用以規(guī)范數(shù)據(jù)格式的數(shù)據(jù)讀寫動態(tài)鏈接庫。本項(xiàng)目采用離散式相位調(diào)制解調(diào)法,采集輸出的三個干涉光強(qiáng)信號,計(jì)算出振動信號引起的光信號相位變化。光束相位與振動信號具有很好的一致性。傳感系統(tǒng)采用波分時分混合復(fù)用技術(shù),解復(fù)用時利用延時錯位耦合的方式降低系統(tǒng)串?dāng)_。項(xiàng)目研發(fā)過程中對64個檢波器和由其構(gòu)成的傳感網(wǎng)絡(luò)進(jìn)行測試,測試表明:檢波器靈敏度為1028rad/g@60Hz,線性度為0.997,共振頻率為300Hz-350Hz,高于工作頻率不影響探測性能;除4個檢波器外,其余檢波器的起振時間均相同。光纖傳感系統(tǒng)野外噪聲約為50ng√Hz@200Hz,時分復(fù)用串?dāng)_均小于-76dB,波分復(fù)用串?dāng)_均小于為-59dB。實(shí)驗(yàn)證明本系統(tǒng)可以實(shí)現(xiàn)地震波的探測,同時具有探測靈敏度高、環(huán)境噪聲小、系統(tǒng)間串?dāng)_小等優(yōu)點(diǎn)。
[Abstract]:High-reso1ution Fiber-Optic Seismic system HR-FOSS is a new generation seismic wave detection system based on fiber-optic accelerometer array. High-precision real-time detection of oil and gas reservoir structure and migration. HR-FOSS technology will gradually replace the traditional technology as the supporting equipment for oil exploration and production. It is the trend and direction of petroleum exploration and production in the next few years. A small scale HR-FOSS prototype system is developed in this paper. In order to lay a technical and technological foundation for the development of commercial high-resolution optical oil and gas layer monitoring system in the future, except for the 64 geophone, the other technical requirements of small-scale HR-FOSS are basically the same as those of large-scale system. It includes six modules: multiwavelength laser light source module, optical modulation and demodulation module, optical sensing module, data processing module, system control computer and system power supply module. In this paper, the optical modulation and demodulation module and the optical sensing module are designed and fabricated, the discrete phase modulation and demodulation method and a kind of wavelength division time division hybrid multiplexing technique are studied, and the difference between the traditional petroleum data and the output data of the system is studied. A dynamic link library for data reading and writing is designed and written to standardize the data format. Three interference intensity signals are collected by discrete phase modulation and demodulation in this project. The phase change of the optical signal caused by the vibration signal is calculated. The phase of the beam is in good agreement with the vibration signal. In demultiplexing, the crosstalk of the system is reduced by time-delay staggered coupling. In the course of the project, 64 geophone and sensor network are tested. The test results show that the sensitivity of the geophone is 1028rad/ g @ 60Hz, the linearity is 0.997, the resonance frequency is 300Hz-350Hz, and the detection performance is not affected by the operating frequency. The field noise of the optical fiber sensing system is about 50ng / hm ~ (200) Hz, the crosstalk of time division multiplexing is less than -76dB, and the crosstalk of wavelength division multiplexing is less than -59dB.Experimental results show that the system can detect seismic waves. At the same time, it has the advantages of high detection sensitivity, low ambient noise and small crosstalk between systems.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張帥帥;林君;張林行;徐立安;孫副津;杜赫然;;動圈式檢波器的測試標(biāo)定方法研究[J];中國測試;2016年04期
2 吳學(xué)兵;劉英明;高侃;;干涉型光纖地震檢波器研發(fā)及效果分析[J];石油物探;2016年02期
3 任仲杰;王海林;朱日宏;薛燕;李珊珊;徐珩;;一種基于雙端固定梁的高靈敏度光纖加速度傳感器[J];激光與光電子學(xué)進(jìn)展;2016年02期
4 張發(fā)祥;張曉磊;王路杰;王昌;;高靈敏度大帶寬光纖光柵微地震檢波器研究[J];光電子.激光;2014年06期
5 卞龐;吳媛;賈波;肖倩;;基于改進(jìn)型sagnac干涉儀的擾動定位系統(tǒng)[J];儀器儀表學(xué)報;2012年12期
6 王增波;李雁鴻;趙劍;陳繼紅;錢忠平;;SEG-Y地震數(shù)據(jù)格式解析及轉(zhuǎn)換方法[J];物探裝備;2012年03期
7 邵敏;喬學(xué)光;馮德全;羅小東;趙建林;;基于光纖Bragg光柵的地震檢波器的理論與實(shí)驗(yàn)研究[J];光電子.激光;2012年03期
8 王淑華;;MEMS傳感器現(xiàn)狀及應(yīng)用[J];微納電子技術(shù);2011年08期
9 Michael H.Ritzwoller;;Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data[J];Earthquake Science;2011年01期
10 王建飛;王瀟;羅洪;孟洲;;法拉第旋光鏡旋轉(zhuǎn)角和工作波長對單模光纖邁克耳孫干涉儀性能的影響[J];中國激光;2010年04期
,本文編號:1604191
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1604191.html