大口徑長(zhǎng)條形反射鏡組件自重變形的仿真與試驗(yàn)
發(fā)布時(shí)間:2018-03-12 21:27
本文選題:空間光學(xué)遙感器 切入點(diǎn):大口徑反射鏡 出處:《光學(xué)精密工程》2016年06期 論文類(lèi)型:期刊論文
【摘要】:研究了空間光學(xué)遙感器的大口徑長(zhǎng)條形反射鏡組件在自重載荷作用下的面形變化,實(shí)驗(yàn)驗(yàn)證和定量分析了Zernike多項(xiàng)式擬合法以及球面方程擬合法得到的仿真分析結(jié)果的精度。介紹了Zernike多項(xiàng)式擬合法以及球面方程擬合法的基本原理,分別用這兩種算法對(duì)大口徑長(zhǎng)條形反射鏡組件在自重載荷作用下的面形變化進(jìn)行了仿真分析。根據(jù)誤差合成原理,提出了依據(jù)翻轉(zhuǎn)前后兩個(gè)狀態(tài)的面形檢測(cè)結(jié)果計(jì)算鏡面面形變化的方法;針對(duì)離軸反射鏡在面形檢測(cè)過(guò)程中存在離軸量與鏡面像散互相補(bǔ)償?shù)默F(xiàn)象,求解了離軸量變化量與鏡面像散的關(guān)系。試驗(yàn)結(jié)果顯示:Zernike多項(xiàng)式擬合法的計(jì)算精度為74.2%,而球面方程擬合法的計(jì)算精度為12.6%;對(duì)仿真分析結(jié)果的誤差評(píng)價(jià)表明,采用有限元法得到的仿真分析結(jié)果的理論精度值為10%左右,與球面方程擬合方法的計(jì)算精度12.6%基本吻合。研究表明,由于Zernike多項(xiàng)式擬合法自身的局限性,不適合對(duì)長(zhǎng)條形反射鏡面形變化進(jìn)行擬合,而球面方程擬合法的計(jì)算精度能夠滿(mǎn)足工程要求。
[Abstract]:Study on the change of surface shape of large aperture rectangular mirror component of space optical remote sensor under the action of self weight load, experimental verification and quantitative analysis of the simulation of Zernike polynomial fitting and spherical equation fitting method to get the accuracy of the results. This paper introduces Zernike polynomial fitting and quasi spherical equation the basic principle of legal, respectively the two algorithms of surface deformation of large aperture rectangular mirror component under the action of self weight load are simulated and analyzed. According to the principle of synthesis error, puts forward the calculation method of surface shape change of surface before and after the turnover of two state detection results; for off-axis reflector surface are off-axis with the mirror astigmatism compensates the phenomenon in the process of detection, the relationship between solving off-axis variation and mirror astigmatism. The experimental results show that Zernike polynomial fitting precision. 74.2% degrees, and the spherical equation calculation accuracy is 12.6% that of the legitimate; error evaluation of simulation results, the accuracy of the simulation results obtained by using the theory of finite element method, the value is about 10%, and the accuracy of the 12.6% fitting methods of spherical equation basically. Research shows that due to the Zernike polynomial fitting limitations that is not suitable for long strip mirror changes are fitted, and the spherical equation quasi legal calculation accuracy can meet the engineering requirements.
【作者單位】: 中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所;
【基金】:國(guó)家863高技術(shù)研究發(fā)展計(jì)劃資助項(xiàng)目(No.2009AA7020107)
【分類(lèi)號(hào)】:TP73
,
本文編號(hào):1603358
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1603358.html
最近更新
教材專(zhuān)著