AGV車電池SOC估算算法研究與實(shí)現(xiàn)
本文選題:自動(dòng)引導(dǎo)車 切入點(diǎn):電池剩余容量 出處:《湖北工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:自動(dòng)引導(dǎo)車(Automated Guided Vehicle,AGV車)是一種自動(dòng)化的搬運(yùn)設(shè)備,一般由蓄電池提供動(dòng)力,能夠按照既定的路線搬運(yùn)物料,是現(xiàn)代工業(yè)生產(chǎn)線必不可少的搬運(yùn)工具。AGV車工況特殊,實(shí)時(shí)準(zhǔn)確估算其電池SOC值難度較大。常用的安時(shí)積分法在特殊工況下準(zhǔn)確度較低,無法滿足工業(yè)生產(chǎn)需求。本文提出一種改進(jìn)擴(kuò)展卡爾曼濾波算法,使用該方法估算AGV車電池SOC值可以將誤差控制在5%以內(nèi)。具體研究?jī)?nèi)容如下:第一:詳細(xì)分析了AGV車實(shí)際運(yùn)行工況,明確其充電電流大,放電電流小,充電時(shí)間短,充電頻率高的工況特點(diǎn)。第二:建立Thevenin電池等效模型,使用擴(kuò)展卡爾曼濾波法估算AGV車電池SOC值,相比安時(shí)積分法估算精度有所提高,但是傳統(tǒng)擴(kuò)展卡爾曼濾波法在AGV車特殊工況下跟蹤效果差,由此帶來了較大的估算誤差。第三:針對(duì)傳統(tǒng)擴(kuò)展卡爾曼濾波法估算AGV車電池SOC值跟蹤效果差的問題,提出改進(jìn)擴(kuò)展卡爾曼濾波算法,將擴(kuò)展卡爾曼濾波法的濾波增益改進(jìn)為動(dòng)態(tài)調(diào)整濾波增益,提高擴(kuò)展卡爾曼濾波法在特殊工況下的跟蹤效果。第四:通過編程讀取AGV車實(shí)際運(yùn)行數(shù)據(jù)來模擬其工況,進(jìn)而分析擴(kuò)展卡爾曼濾波法估算AGV車電池SOC值的效果,驗(yàn)證改進(jìn)擴(kuò)展卡爾曼濾波算法的有效性。實(shí)驗(yàn)表明擴(kuò)展卡爾曼濾波法相對(duì)安時(shí)積分法估算精度較高,采用動(dòng)態(tài)校正的濾波增益提高了估算過程的跟蹤效果,解決了AGV車特殊工況下SOC估算不準(zhǔn)確的問題,將AGV車電池SOC值誤差控制在5%以內(nèi)。同時(shí)針對(duì)本算法進(jìn)行系統(tǒng)硬件和軟件設(shè)計(jì),并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。鑒于AGV車與電動(dòng)汽車有很多相似之處,特別是隨著電動(dòng)汽車的發(fā)展其工況越來越復(fù)雜,如何提高復(fù)雜工況下電池SOC值估算精度具有較大的研究意義,因此本文研究成果有一定的推廣意義。
[Abstract]:Automated Guided vehicle (AGV) is a kind of automatic handling equipment, which is generally powered by batteries and can carry materials according to the established route. It is a necessary handling tool for modern industrial production line. It is difficult to estimate the SOC value of the battery in real time and accurately, and the common amp-hour integration method can not meet the demand of industrial production because of its low accuracy under special working conditions. In this paper, an improved extended Kalman filter algorithm is proposed. Using this method to estimate the SOC value of AGV vehicle battery, the error can be controlled within 5%. The specific research contents are as follows: first, the actual operating conditions of AGV vehicle are analyzed in detail, and it is clear that the charging current is large, the discharge current is small, and the charging time is short. Second, the equivalent model of Thevenin battery is established, and the SOC value of AGV vehicle battery is estimated by using extended Kalman filter method. However, the traditional extended Kalman filter method has poor tracking effect under the special working condition of AGV vehicle, which brings great estimation error. Third, aiming at the problem of poor tracking effect of traditional extended Kalman filter method in estimating SOC value of AGV vehicle battery, An improved extended Kalman filter (EKF) algorithm is proposed, in which the filter gain of the EKF is improved to dynamically adjust the filter gain. Improve the tracking effect of extended Kalman filter method under special working conditions. 4th: read the actual operation data of AGV vehicle by programming to simulate its working condition, and then analyze the effect of extended Kalman filter method to estimate the SOC value of AGV vehicle battery. The experimental results show that the extended Kalman filter method has higher estimation accuracy than the Anchorage integration method, and the tracking effect of the estimation process is improved by using the dynamic correction filter gain. The problem of inaccurate SOC estimation under special working conditions of AGV vehicle is solved, and the error of SOC value of AGV vehicle battery is controlled within 5%. At the same time, the system hardware and software are designed for this algorithm. In view of the similarities between AGV vehicle and electric vehicle, especially with the development of electric vehicle, it is of great significance to study how to improve the estimation accuracy of battery SOC value under complex operating conditions, especially with the development of electric vehicle. Therefore, the research results of this paper have certain popularization significance.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁玲;;電動(dòng)汽車用動(dòng)力電池發(fā)展綜述[J];電源技術(shù);2015年07期
2 劉大同;周建寶;郭力萌;彭宇;;鋰離子電池健康評(píng)估和壽命預(yù)測(cè)綜述[J];儀器儀表學(xué)報(bào);2015年01期
3 劉國剛;;重載AGV輕量化設(shè)計(jì)研究[J];制造業(yè)自動(dòng)化;2014年10期
4 劉和平;許巧巧;胡銀全;袁閃閃;;自適應(yīng)卡爾曼濾波法磷酸鐵鋰動(dòng)力電池剩余容量估計(jì)[J];重慶大學(xué)學(xué)報(bào);2014年01期
5 鮑慧;于洋;;基于安時(shí)積分法的電池SOC估算誤差校正[J];計(jì)算機(jī)仿真;2013年11期
6 戴海峰;魏學(xué)哲;孫澤昌;陳金干;;電動(dòng)汽車用鋰離子動(dòng)力電池電感主動(dòng)均衡系統(tǒng)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年10期
7 閆秋麗;;淺談鋰離子電池充放電[J];科技致富向?qū)?2013年14期
8 方明杰;王群京;;基于擴(kuò)展卡爾曼濾波算法的鋰離子電池的SOC估算[J];電工電能新技術(shù);2013年02期
9 羅玉濤;謝斌;何小顫;;電動(dòng)汽車鋰離子電池組參數(shù)辨識(shí)與SOC估計(jì)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年12期
10 魏克新;陳峭巖;;基于多模型自適應(yīng)卡爾曼濾波器的電動(dòng)汽車電池荷電狀態(tài)估計(jì)[J];中國電機(jī)工程學(xué)報(bào);2012年31期
相關(guān)碩士學(xué)位論文 前9條
1 劉先勇;AGV車用鋰離子電池管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西南科技大學(xué);2015年
2 張冬梅;基于改進(jìn)卡爾曼濾波算法的SOC估計(jì)方法研究[D];西南交通大學(xué);2015年
3 李湘江;純電動(dòng)汽車動(dòng)力電池組剩余電量估算研究及整車建模仿真[D];中北大學(xué);2015年
4 孫盼玲;鋰離子電池負(fù)極材料硫化鉬的制備及電化學(xué)性能研究[D];華中科技大學(xué);2014年
5 陳明;基于STM32的嵌入式web服務(wù)器的設(shè)計(jì)[D];武漢理工大學(xué);2013年
6 朱元培;電動(dòng)汽車動(dòng)力電池剩余電量SOC的研究[D];河南師范大學(xué);2013年
7 張松通;LiFePO_4鋰離子電池耐過充/過放性能關(guān)鍵技術(shù)的研究[D];浙江大學(xué);2013年
8 袁閃閃;磷酸鐵鋰動(dòng)力電池荷電狀態(tài)估算方法的研究[D];重慶大學(xué);2012年
9 王嘉誠;中國新能源汽車產(chǎn)業(yè)發(fā)展分析[D];上海師范大學(xué);2012年
,本文編號(hào):1598748
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1598748.html