復(fù)合驅(qū)動(dòng)鏈?zhǔn)焦軆?nèi)機(jī)器人動(dòng)力學(xué)研究
本文選題:管內(nèi)機(jī)器人 切入點(diǎn):復(fù)合驅(qū)動(dòng) 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在現(xiàn)代實(shí)際工程應(yīng)用中,管道作為一種高效的運(yùn)輸工具在工業(yè)生產(chǎn)中得到廣泛應(yīng)用;管道機(jī)器人作為特種機(jī)器人,被用來(lái)代替人類完成各種各樣的管內(nèi)作業(yè),也越來(lái)越被人們所重視。隨著時(shí)間推移,管道環(huán)境越來(lái)越復(fù)雜、管道長(zhǎng)度越來(lái)越長(zhǎng)、管內(nèi)作業(yè)越來(lái)越難等一系列問(wèn)題的出現(xiàn)使得人們對(duì)管內(nèi)機(jī)器人的要求越來(lái)越高。目前,續(xù)航能力強(qiáng)、功能多樣化以及運(yùn)動(dòng)穩(wěn)定性好等優(yōu)點(diǎn)逐漸成為評(píng)價(jià)管內(nèi)機(jī)器人的標(biāo)準(zhǔn);诖,提出復(fù)合驅(qū)動(dòng)鏈?zhǔn)焦軆?nèi)機(jī)器人概念,其復(fù)合驅(qū)動(dòng)滿足了續(xù)航能力強(qiáng)、多單元結(jié)構(gòu)滿足了機(jī)器人的功能多樣化,為后續(xù)的樣機(jī)研制奠定理論基礎(chǔ)。本文以復(fù)合驅(qū)動(dòng)鏈?zhǔn)焦軆?nèi)機(jī)器人概念為基礎(chǔ),首先建立了通用物理模型,以該模型為研究對(duì)象進(jìn)行了靜力學(xué)分析,包括不同姿態(tài)角下電機(jī)驅(qū)動(dòng)力大小、作用在皮碗上的流體驅(qū)動(dòng)力模型及管內(nèi)阻力計(jì)算模型;推導(dǎo)出機(jī)器人在水平和豎直方向運(yùn)動(dòng)的靜力學(xué)平衡條件。然后描述了鏈?zhǔn)綑C(jī)器人通過(guò)各種管道障礙的運(yùn)動(dòng)過(guò)程,包括焊縫障礙物和彎管障礙;分別對(duì)單節(jié)單元體和多節(jié)單元體的彎管通過(guò)過(guò)程進(jìn)行了數(shù)學(xué)描述,推導(dǎo)出通過(guò)彎管的幾何約束條件;討論了不同情況下各滾輪的差速特性對(duì)機(jī)器人轉(zhuǎn)向過(guò)程的影響,并將差速特性應(yīng)用到T型管的通過(guò)過(guò)程中;谔摂M樣機(jī)技術(shù),對(duì)彎管通過(guò)過(guò)程和障礙物通過(guò)過(guò)程進(jìn)行了仿真。將單節(jié)單元體和多節(jié)單元體的過(guò)彎仿真過(guò)程進(jìn)行了速度及滾輪角速度的對(duì)比,通過(guò)對(duì)比驗(yàn)證了單節(jié)單元體與多節(jié)單元體彎管通過(guò)過(guò)程保持一致;此外通過(guò)仿真過(guò)程獲得雙虎克鉸在過(guò)彎過(guò)程中最大轉(zhuǎn)角值;通過(guò)仿真研究了影響機(jī)器人里程輪系統(tǒng)通過(guò)焊縫運(yùn)動(dòng)過(guò)程的主要因素,結(jié)果表明:當(dāng)初始速度改變時(shí),里程輪跳起高度及前后速度變化差值也會(huì)發(fā)生改變。建立了基于CFD算法的流場(chǎng)計(jì)算模型,在改變皮碗與管壁環(huán)形間隙大小的條件下對(duì)管內(nèi)機(jī)器人周圍流場(chǎng)速度矢量和壓強(qiáng)變化進(jìn)行了描述;在Fluent軟件中模擬了PIG型管內(nèi)機(jī)器人隨流體流動(dòng)的運(yùn)動(dòng)過(guò)程,得到了流體作用下速度及加速度的變化趨勢(shì);最后在電機(jī)驅(qū)動(dòng)力與流體驅(qū)動(dòng)力耦合作用下,通過(guò)描述機(jī)器人在四種不同的工況下的運(yùn)動(dòng)過(guò)程,驗(yàn)證了復(fù)合驅(qū)動(dòng)的必要性與合理性。
[Abstract]:Pipeline is widely used in industrial production as an efficient transportation tool in modern engineering applications. As a special robot, pipeline robot is used to replace human to complete a variety of pipeline operations. As time goes by, the pipeline environment is becoming more and more complex, the pipe length is getting longer and longer, and the work in the pipe is becoming more and more difficult. The advantages of strong endurance, diverse functions and good motion stability are gradually becoming the criteria for evaluating the robot in pipe. Based on this, the concept of chain robot with compound drive is put forward, and its compound drive satisfies the strong ability of endurance. The multi-unit structure satisfies the diverse functions of the robot, and lays a theoretical foundation for the subsequent prototype development. In this paper, a general physical model is established on the basis of the concept of a composite driven chain robot in a tube. The static analysis of the model is carried out, including the driving force of the motor at different attitude angles, the fluid driving force model acting on the leather bowl and the calculation model of the resistance in the tube. The static equilibrium conditions of robot movement in horizontal and vertical directions are derived. Then the motion process of chain robot passing through various pipe obstacles including weld obstacle and bend obstacle is described. The passage process of single unit body and multi-section element body is described in mathematics, the geometric constraint condition of passing tube is deduced, and the influence of the differential speed characteristic of each roller on the steering process of robot is discussed. The differential characteristic is applied to the passage of T-tube. Based on the virtual prototyping technology, This paper simulates the passing process of curved pipe and obstacle, and compares the velocity and angular velocity of rolling wheel between single unit body and multi-section element body. It is verified by comparison that the single unit body is consistent with the multi-section element body in the process of bending, and the maximum rotation angle of the double tiger hinge in the process of overbending is obtained by the simulation process. The main factors influencing the movement of the robot mileage wheel system through the weld seam are studied by simulation. The results show that: when the initial velocity changes, The variation of the height and velocity of the mileage wheel will also change. The flow field calculation model based on CFD algorithm is established. The velocity vector and pressure change of the flow field around the robot in the tube are described under the condition of changing the ring gap between the cup and the pipe wall, and the motion process of the robot in the PIG tube with fluid flow is simulated in Fluent software. The variation trend of velocity and acceleration under the action of fluid is obtained. Finally, under the coupling of motor driving force and fluid driving force, the motion process of robot under four different working conditions is described. The necessity and rationality of compound drive are verified.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張仕民;梅旭濤;王國(guó)超;李亨濤;王宏生;;油氣管道維搶修方法及技術(shù)進(jìn)展[J];油氣儲(chǔ)運(yùn);2014年11期
2 祁永斐;趙濤;杜利霞;何照青;;基于動(dòng)網(wǎng)格與UDF方法的穩(wěn)流器流場(chǎng)數(shù)值模擬研究[J];節(jié)水灌溉;2013年05期
3 張功暉;黎志航;周志鴻;;基于Fluent流場(chǎng)數(shù)值仿真的管路流量計(jì)算[J];液壓氣動(dòng)與密封;2010年12期
4 葛如海;王桃英;許棟;臧綾;;基于動(dòng)網(wǎng)格和UDF技術(shù)的氣缸動(dòng)態(tài)特性研究[J];機(jī)床與液壓;2010年21期
5 嵇萍;劉泗巖;;微型機(jī)器人驅(qū)動(dòng)技術(shù)發(fā)展綜述[J];微電機(jī);2009年08期
6 張玉峰;姜生元;李建永;張學(xué)文;;介質(zhì)流壓差驅(qū)動(dòng)式管道機(jī)器人的驅(qū)動(dòng)、調(diào)速原理分析及結(jié)構(gòu)設(shè)計(jì)[J];吉林化工學(xué)院學(xué)報(bào);2009年02期
7 王殿君;李潤(rùn)平;黃光明;;管道機(jī)器人的研究進(jìn)展[J];機(jī)床與液壓;2008年04期
8 鐘映春;楊宜民;;新型能源自給式管道機(jī)器人的原理設(shè)計(jì)與研究[J];機(jī)床與液壓;2006年07期
9 薛龍;孫章軍;孫晨;;微型管內(nèi)機(jī)器人的研究現(xiàn)狀[J];北京石油化工學(xué)院學(xué)報(bào);2006年02期
10 楊宜民;黃明偉;;能源自給式管道機(jī)器人的機(jī)械結(jié)構(gòu)設(shè)計(jì)[J];機(jī)器人;2006年03期
相關(guān)博士學(xué)位論文 前1條
1 張?jiān)苽?煤氣管道檢測(cè)機(jī)器人系統(tǒng)及其運(yùn)動(dòng)控制技術(shù)研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前2條
1 李志勇;流體驅(qū)動(dòng)自適應(yīng)管道爬行器的設(shè)計(jì)與分析[D];北京化工大學(xué);2012年
2 黃明偉;新型無(wú)纜管道機(jī)器人的初探[D];廣東工業(yè)大學(xué);2006年
,本文編號(hào):1588502
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1588502.html