沖擊加速度測量不確定度的評估方法研究
本文選題:測量不確定度 切入點(diǎn):沖擊加速度 出處:《中北大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:沖擊加速度傳感器及其測試系統(tǒng)是目前獲取各種高沖擊瞬態(tài)信號以及各種彈道參數(shù)的核心部件,它們的準(zhǔn)確性對整個測試過程能否取得成功以及測試結(jié)果是否可靠起著決定性的作用,是以很有必要對沖擊加速度傳感器及其測試系統(tǒng)的測量不確定度進(jìn)行評估。按照不確定度評定結(jié)果,可以確定沖擊加速度測量的準(zhǔn)確度;诖,本文主要進(jìn)行了如下研究:(1)研究了目前常用的幾種測量不確定度評定方法,包括GUM法、蒙特卡洛法和貝葉斯評定法,并對各自的基本原理及使用方法做了詳細(xì)分析,總結(jié)了測量不確定度評定的一般流程。(2)通過分析測量系統(tǒng)的不確定來源,以沖擊加速度傳感器峰值靈敏度的Hopkinson桿校準(zhǔn)系統(tǒng)為例,對校準(zhǔn)結(jié)果分別運(yùn)用GUM、貝葉斯和蒙特卡洛評定法進(jìn)行不確定度評定,詳細(xì)分析了這三種方法各自的優(yōu)缺點(diǎn),并提出在動態(tài)測試中,對于不同的測試系統(tǒng)若用這三種方法需分別尋求各自的適用條件,不具有普遍適用性,且其無法對整個連續(xù)過程的不確定度進(jìn)行估算,針對這些問題提出基于頻率域的動態(tài)不確定度評定法,且其適用于在一定范圍內(nèi)對各種不同測試系統(tǒng)進(jìn)行不確定度估計。(3)在頻率域?qū)討B(tài)測量不確定度進(jìn)行估算法的具體流程是:針對實(shí)際測試系統(tǒng),建立一個理想測試系統(tǒng),求出兩個測試系統(tǒng)的動態(tài)測量誤差;分別求出兩個測試系統(tǒng)的幅.頻特性和相頻特性,并根據(jù)帕斯瓦爾定理求出該動態(tài)誤差的功率譜函數(shù);根據(jù)功率譜求出實(shí)際的動態(tài)測量不確定度。最后以沖擊加速度傳感器的動態(tài)校準(zhǔn)系統(tǒng)以及測試系統(tǒng)為例,將該動態(tài)測量不確定度估算法應(yīng)用于實(shí)際當(dāng)中。(4)對動態(tài)校準(zhǔn)系統(tǒng)以及測試系統(tǒng)進(jìn)行建模,求出系統(tǒng)特性,通過將對輸入信號的響應(yīng)曲線與實(shí)際測得的響應(yīng)曲線進(jìn)行比較求出測量不確定度,最后將結(jié)果與頻率域的估算結(jié)果進(jìn)行比較,驗(yàn)證提出的頻率域動態(tài)測量不確定度估算法的可行性。
[Abstract]:The shock acceleration sensor and its testing system are the core components for obtaining all kinds of high impact transient signals and various ballistic parameters. Their accuracy plays a decisive role in the success of the whole test process and the reliability of the test results. It is necessary to evaluate the measurement uncertainty of the shock acceleration sensor and its measuring system. According to the evaluation result of the uncertainty, the accuracy of the impact acceleration measurement can be determined. In this paper, the following research is carried out: (1) several commonly used measurement uncertainty evaluation methods, including GUM method, Monte Carlo method and Bayesian evaluation method, are studied, and their basic principles and application methods are analyzed in detail. This paper summarizes the general flow chart of uncertainty evaluation of measurement. By analyzing the source of uncertainty in measurement system, the Hopkinson rod calibration system with peak sensitivity of shock acceleration sensor is taken as an example. The uncertainty of calibration results is evaluated by using GUM, Bayes and Monte Carlo methods respectively. The advantages and disadvantages of the three methods are analyzed in detail, and the dynamic test results are proposed. For different test systems, if the three methods need to seek their own applicable conditions, they are not universally applicable, and the uncertainty of the whole continuous process can not be estimated by the three methods. To solve these problems, a dynamic uncertainty evaluation method based on frequency domain is proposed. And it is suitable for estimating the uncertainty of various test systems in a certain range. The concrete flow of the method for estimating the uncertainty of dynamic measurement in frequency domain is to establish an ideal test system for the actual test system. The dynamic measurement error of the two test systems is obtained, the amplitude, frequency and phase frequency characteristics of the two test systems are obtained, and the power spectrum function of the dynamic error is obtained according to the Pasval theorem. According to the power spectrum, the actual uncertainty of dynamic measurement is obtained. Finally, the dynamic calibration system of impact acceleration sensor and the test system are taken as an example. The uncertainty estimation method of dynamic measurement is applied in practice. (4) the dynamic calibration system and the test system are modeled, and the characteristics of the system are obtained. By comparing the response curve of the input signal with the measured response curve, the uncertainty of the measurement is obtained. Finally, the results are compared with the estimated results in the frequency domain. The feasibility of the proposed method for estimating the uncertainty of dynamic measurement in frequency domain is verified.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王艷陽;石云波;王華;康強(qiáng);楊志才;;高g值加速度傳感器校準(zhǔn)不確定度及誤差分析[J];傳感技術(shù)學(xué)報;2016年07期
2 李玲玲;范錦彪;王燕;;彈體侵徹過程中剛體過載實(shí)時提取的濾波方法[J];中國測試;2015年11期
3 潘麗;;測量不確定度評定的研究進(jìn)展與展望[J];黑龍江科學(xué);2015年08期
4 李科杰;何f+;張振海;林然;李治清;;高沖擊加速度傳感器發(fā)展現(xiàn)狀及趨勢[J];探測與控制學(xué)報;2013年04期
5 潘龍麗;石云波;周智君;尚曉亮;劉俊;;MEMS高量程加速度傳感器的動態(tài)特性分析[J];傳感技術(shù)學(xué)報;2012年10期
6 楊建;;蒙特卡羅法評定測量不確定度中相關(guān)隨機(jī)變量的MATLAB實(shí)現(xiàn)[J];計測技術(shù);2012年04期
7 陳小昊;陳曉懷;李高峰;;基于貝葉斯理論的不確定度評定[J];黑龍江大學(xué)工程學(xué)報;2012年02期
8 漢澤西;邢靖虹;;基于擬蒙特卡洛方法的動態(tài)測量不確定度評定[J];電子測試;2011年05期
9 陳懷艷;曹蕓;韓潔;;基于蒙特卡羅法的測量不確定度評定[J];電子測量與儀器學(xué)報;2011年04期
10 王中宇;葛樂矣;楊文平;李萌;;一種小樣本虛擬儀器測量不確定度評定新方法[J];計量學(xué)報;2008年04期
,本文編號:1558772
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1558772.html