光線掃描超分辨率精密表面干涉在線測(cè)量系統(tǒng)研究
本文關(guān)鍵詞: 表面測(cè)量 線掃描測(cè)量 干涉測(cè)量 光譜色散 在線測(cè)量 超分辨率測(cè)量 出處:《北京交通大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:隨著先進(jìn)制造、航空航天、光學(xué)、生物醫(yī)學(xué)、材料、微電子、微機(jī)電系統(tǒng)等領(lǐng)域的發(fā)展,出現(xiàn)了很多精密和超精密表面。這些精密和超精密表面在很大程度上決定了產(chǎn)品的使用性能,對(duì)這些表面進(jìn)行高精度測(cè)量對(duì)產(chǎn)品的設(shè)計(jì)、制造及使用具有重要意義。各領(lǐng)域的發(fā)展需要對(duì)這些精密和超精密表面進(jìn)行非接觸、高精度、快速、在線測(cè)量,F(xiàn)有測(cè)量方法難以滿足這些測(cè)量需求。針對(duì)這一現(xiàn)狀,本論文提出并研究了光線掃描超分辨率精密表面干涉在線測(cè)量系統(tǒng),可以對(duì)精密及超精密表面進(jìn)行非接觸、高精度、快速、在線測(cè)量。研究的測(cè)量系統(tǒng)包括光線掃描精密表面干涉測(cè)量系統(tǒng)、反饋穩(wěn)定系統(tǒng)和超橫向分辨率測(cè)量系統(tǒng)三個(gè)部分。首先,提出并研究了光線掃描精密表面干涉測(cè)量系統(tǒng),將寬帶光源發(fā)出的光色散成波長(zhǎng)在垂直于光波傳播方向連續(xù)分布的平行光片,將此光片聚焦成光線掃描被測(cè)表面,實(shí)現(xiàn)了對(duì)被測(cè)表面的非接觸、高精度、快速測(cè)量。第二,為了使研制的干涉測(cè)量系統(tǒng)適合在線測(cè)量,研究了反饋穩(wěn)定系統(tǒng),對(duì)環(huán)境干擾對(duì)干涉測(cè)量系統(tǒng)的影響進(jìn)行修正補(bǔ)償,提高干涉測(cè)量系統(tǒng)的抗干擾能力,使之適合在線測(cè)量。第三,為了提高測(cè)量系統(tǒng)的橫向分辨率,研究了一維振幅型光瞳濾波器,利用一維振幅型光瞳濾波器使測(cè)量系統(tǒng)的橫向分辨率突破了光波的衍射極限,實(shí)現(xiàn)了超橫向分辨率測(cè)量。最后,研究了光線掃描超分辨率精密表面干涉在線測(cè)量系統(tǒng),實(shí)現(xiàn)了對(duì)精密表面的非接觸、高精度、快速、超分辨、在線測(cè)量,滿足各領(lǐng)域的發(fā)展對(duì)精密和超精密表面提出的測(cè)量要求。本論文的主要?jiǎng)?chuàng)新如下:1.提出了光線掃描精密表面三維干涉測(cè)量系統(tǒng),只需一維掃描即可完成精密表面三維測(cè)量。與點(diǎn)掃描測(cè)量方式相比,光線掃描測(cè)量方式極大地提高了測(cè)量速度,掃描機(jī)構(gòu)簡(jiǎn)單,簡(jiǎn)化了測(cè)量系統(tǒng),降低了成本;測(cè)量系統(tǒng)結(jié)構(gòu)的簡(jiǎn)化還減少了誤差源,為高精度測(cè)量打下了堅(jiān)實(shí)的基礎(chǔ)。2.光線掃描被測(cè)表面時(shí),入射到被測(cè)表面不同被測(cè)點(diǎn)的光波波長(zhǎng)不同且固定不變,測(cè)量結(jié)果能準(zhǔn)確溯源到波長(zhǎng)基準(zhǔn)。利用閃耀光柵對(duì)寬帶光源發(fā)出的光進(jìn)行色散,形成波長(zhǎng)在垂直于光波傳播方向連續(xù)分布的平行光片,此平行光片經(jīng)聚焦后對(duì)被測(cè)表面進(jìn)行線掃描測(cè)量,只要各光學(xué)元件的空間位置固定,被測(cè)表面不同被測(cè)點(diǎn)接收到的波長(zhǎng)就固定不變,不受光源光譜漂移的影響,因此,測(cè)量結(jié)果能準(zhǔn)確溯源到波長(zhǎng)基準(zhǔn)。3.設(shè)計(jì)了反饋穩(wěn)定系統(tǒng)以補(bǔ)償環(huán)境干擾的影響,實(shí)現(xiàn)對(duì)干涉儀的穩(wěn)定,使測(cè)量系統(tǒng)適合在線測(cè)量。4.設(shè)計(jì)了一維振幅型光瞳濾波器,對(duì)聚焦后掃描光線的寬度進(jìn)行壓縮,使光線寬度方向的橫向分辨率突破了光波衍射極限的限制,實(shí)現(xiàn)超橫向分辨率測(cè)量。
[Abstract]:With the development of advanced manufacturing, aerospace, optics, biomedicine, materials, microelectronics, MEMS and so on, There are many precision and ultra-precision surfaces. These precision and ultra-precision surfaces largely determine the performance of the product, and the design of the product is measured with high precision on these surfaces. Manufacturing and use are of great significance. The development of various fields requires non-contact, high-precision, fast, on-line measurement of these precision and ultra-precision surfaces. Existing methods of measurement are difficult to meet these measuring requirements. In this paper, an on-line measurement system of ray-scanning super-resolution precision surface interferometry is proposed and studied. The system can perform non-contact, high-precision and fast surface measurement for precision and ultra-precision surfaces. On-line measurement. The measurement system is composed of three parts: ray-scanning precise surface interferometry system, feedback stabilization system and super-lateral resolution measurement system. Firstly, a ray-scanning precision surface interferometry system is proposed and studied. The optical dispersion emitted by the broadband light source is transformed into a parallel film whose wavelength is continuously distributed in the direction perpendicular to the propagation direction of the light wave. The light sheet is focused to scan the measured surface, which realizes the non-contact, high precision and fast measurement of the measured surface. In order to make the interference measurement system suitable for on-line measurement, the feedback stabilization system is studied, and the influence of environmental interference on the interference measurement system is corrected and compensated, and the anti-interference ability of the interference measurement system is improved. Third, in order to improve the lateral resolution of the measurement system, the one-dimensional amplitude pupil filter is studied, and the transverse resolution of the measurement system exceeds the diffraction limit of the optical wave by using the one-dimensional amplitude pupil filter. Finally, the on-line measurement system of ray-scanning super-resolution precision surface interference is studied, and the non-contact, high-precision, fast, super-resolution, on-line measurement of the precision surface is realized. The main innovation of this paper is as follows: 1. A 3D interferometry system for ray-scanning precision surfaces is proposed. Compared with the point scanning method, the ray-scanning method can greatly improve the measuring speed, the scanning mechanism is simple, the measuring system is simplified, and the cost is reduced. The simplification of the structure of the measurement system also reduces the error source, which lays a solid foundation for high precision measurement. When light scans the measured surface, the wavelengths of the light waves incident to different measured points on the measured surface are different and fixed. The measured results can be traced to the wavelength reference accurately. The blazed grating is used to dispersion the light emitted by the broadband light source, and a parallel optical film with continuous wavelength distribution perpendicular to the direction of the light wave propagation is formed. After focusing, the measured surface is measured by linear scanning. As long as the spatial position of each optical element is fixed, the wavelength received at different measured points on the measured surface will be fixed, and will not be affected by the spectral drift of the light source. The measurement results can be traced to the wavelength reference .3.The feedback stabilization system is designed to compensate for the influence of environmental interference, and the stability of the interferometer is realized. The measurement system is suitable for on-line measurement .4.One-dimensional amplitude pupil filter is designed. The width of scanning light after focusing is compressed to make the transverse resolution of the width of light break the limit of diffraction limit of light wave and realize the measurement of super transverse resolution.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳莉;徐軍;陳晶;;掃描電子顯微鏡顯微分析技術(shù)在地球科學(xué)中的應(yīng)用[J];中國(guó)科學(xué):地球科學(xué);2015年09期
2 常素萍;謝鐵邦;;基于白光干涉的MEMS三維表面形貌測(cè)量[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年09期
3 岳兆陽(yáng);林德教;宋南海;孟永鋼;殷純永;;對(duì)稱共路外差干涉法測(cè)量硬盤磁頭飛行高度瞬態(tài)調(diào)制[J];中國(guó)激光;2007年06期
4 郭彤;胡春光;陳津平;傅星;胡小唐;;垂直掃描白光干涉術(shù)用于微機(jī)電系統(tǒng)的尺寸表征[J];光學(xué)學(xué)報(bào);2007年04期
5 王吉明;劉立人;云茂金;趙棟;劉錫民;郎海濤;;電控徑向?yàn)V波器的橫向超分辨與軸向焦移[J];光子學(xué)報(bào);2006年10期
6 肖繁榮,袁景和,王桂英,徐至展;正弦變化的振幅型光瞳濾波器[J];光學(xué)學(xué)報(bào);2005年05期
7 閆聚群,柳忠堯,林德教,張蕊,殷純永,徐毅,許婕;大臺(tái)階高度測(cè)量的外差共焦方法[J];中國(guó)激光;2005年03期
8 王永紅,余曉芬,俞建衛(wèi),黃其圣,徐科軍;高精度非掃描三維光聚焦探測(cè)系統(tǒng)的研究[J];應(yīng)用科學(xué)學(xué)報(bào);2004年02期
9 肖繁榮,袁景和,王桂英,徐至展;三區(qū)復(fù)振幅光瞳濾波器[J];光學(xué)學(xué)報(bào);2004年01期
10 林德教,柳忠堯,張蕊,殷純永,徐毅;雙頻干涉共焦臺(tái)階高度測(cè)量系統(tǒng)[J];中國(guó)激光;2003年11期
相關(guān)博士學(xué)位論文 前4條
1 王淑珍;基于白光干涉超精密表面形貌測(cè)量方法與系統(tǒng)研究[D];華中科技大學(xué);2010年
2 徐晨;動(dòng)態(tài)干涉測(cè)試技術(shù)與應(yīng)用研究[D];南京理工大學(xué);2009年
3 李海燕;多功能共焦表面測(cè)量系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2009年
4 吳棟;移相干涉儀自適應(yīng)抗振技術(shù)研究[D];南京理工大學(xué);2004年
,本文編號(hào):1542646
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1542646.html