體聲波傳感器檢測(cè)電路設(shè)計(jì)
本文關(guān)鍵詞: 體聲波諧振器 BAW傳感器 BAW振蕩器 頻率穩(wěn)定度 檢測(cè)電路 出處:《西南科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:由于體聲波(Bulk Acoustic Wave,BAW)傳感器具有體積小、靈敏度高、工作頻率高、功率損耗低和互補(bǔ)金屬氧化物半導(dǎo)體(Complementary Metal Oxide Semiconductor,CMOS)兼容的特點(diǎn),因此BAW傳感器具有廣泛的應(yīng)用前景。BAW傳感器通過(guò)檢測(cè)體聲波諧振器(Bulk acoustic Wave Resonator,BAWR)的諧振頻率變化得到待測(cè)物理量。本文旨在設(shè)計(jì)BAW傳感器的檢測(cè)電路,檢測(cè)BAWR在受到待測(cè)物理量作用時(shí)產(chǎn)生的諧振頻率偏移,最終實(shí)現(xiàn)待測(cè)物理量的檢測(cè)。由于BAWR易受到環(huán)境等因素的干擾,導(dǎo)致檢測(cè)結(jié)果不準(zhǔn)確,本文采用雙路差分的測(cè)量方法,將BAWR構(gòu)成兩路振蕩器,一路用于參考另一路用于測(cè)量。兩路振蕩器通過(guò)混頻、濾波得到由待測(cè)物理量引起的諧振頻率偏移信號(hào),之后將該信號(hào)通過(guò)放大、整形電路轉(zhuǎn)換為方波信號(hào),最后采用頻率檢測(cè)電路得到方波信號(hào)的頻率。建立了基于Pierce架構(gòu)的BAW振蕩器,將BAWR諧振頻率的變化反映到振蕩頻率的變化上。提出了BAWR的質(zhì)量負(fù)載等效電感的量化方法,用質(zhì)量負(fù)載等效電感來(lái)模擬待測(cè)的質(zhì)量,解決了無(wú)法對(duì)BAW質(zhì)量傳感器進(jìn)行系統(tǒng)級(jí)行為仿真的難點(diǎn)。研究了影響B(tài)AW振蕩器頻率穩(wěn)定度的因素,并對(duì)BAW振蕩器的頻率穩(wěn)定度和功耗進(jìn)行了優(yōu)化,改善了BAW振蕩器的綜合性能。對(duì)信號(hào)轉(zhuǎn)換電路進(jìn)行了設(shè)計(jì),包括混頻器、放大器和整形電路。采用微帶分支定向耦合器、混頻二極管和低通濾波器構(gòu)成混頻器,并對(duì)混頻器進(jìn)行了場(chǎng)-路聯(lián)合仿真,得到了兩路振蕩信號(hào)的頻率差。對(duì)信號(hào)轉(zhuǎn)換電路進(jìn)行了制作與測(cè)試,測(cè)試結(jié)果與仿真結(jié)果對(duì)比基本吻合,驗(yàn)證了電路的可行性。針對(duì)信號(hào)轉(zhuǎn)換電路輸出的方波信號(hào),采用現(xiàn)場(chǎng)可編程門(mén)陣列(Field Programmable Gate Array,FPGA)設(shè)計(jì)了頻率檢測(cè)電路。以自頂向下的方式,采用精度較高的全同步測(cè)頻法,根據(jù)具體工作原理設(shè)計(jì)了頻率檢測(cè)電路的各個(gè)子模塊,通過(guò)仿真驗(yàn)證了每個(gè)模塊的功能。最后通過(guò)元件例化語(yǔ)句將子模塊連接起來(lái)構(gòu)成頂層模塊,通過(guò)頂層模塊仿真,得到了在不同的被測(cè)信號(hào)頻率的輸入條件下的仿真結(jié)果,驗(yàn)證了電路功能的正確性。
[Abstract]:Bulk Acoustic wave (bulk Acoustic wave) sensors are small in size, high in sensitivity, high in operating frequency, low in power loss and compatible with complementary Metal Oxide Semiconductors (CMOS). Therefore, the BAW sensor has a wide application prospect. The BAW sensor obtains the physical quantity to be measured by detecting the change of the resonant frequency of bulk acoustic Wave Resonator. This paper aims to design the detection circuit of BAW sensor. The resonance frequency offset of BAWR is detected when it is acted on by the physical quantity to be tested, and the detection of the physical quantity to be tested is finally realized. Because the BAWR is easily disturbed by the environment and other factors, the detection result is not accurate. In this paper, the method of double channel differential measurement is used. The BAWR is used to form a two-channel oscillator, one of which is used for reference to the other one for measurement. The oscillator filters the resonant frequency offset signal caused by the physical quantity to be measured by mixing the frequency of the oscillator, and then amplifies the signal. The shaping circuit is converted into square wave signal. Finally, the frequency of square wave signal is obtained by frequency detection circuit. A BAW oscillator based on Pierce architecture is established. The variation of BAWR resonance frequency is reflected in the change of oscillation frequency. A quantization method of mass load equivalent inductance of BAWR is proposed. The mass is simulated by mass load equivalent inductance. The difficulty of system-level behavior simulation of BAW mass sensor is solved. The factors influencing the frequency stability of BAW oscillator are studied, and the frequency stability and power consumption of BAW oscillator are optimized. The integrated performance of BAW oscillator is improved. The signal conversion circuit is designed, including mixer, amplifier and shaping circuit. The mixer is composed of microstrip branching directional coupler, mixing diode and low pass filter. The frequency difference of the two oscillating signals is obtained by the field-circuit combined simulation. The signal conversion circuit is fabricated and tested, and the test results are in good agreement with the simulation results. The feasibility of the circuit is verified. For the square wave signal output from the signal conversion circuit, a frequency detection circuit is designed using Field Programmable Gate Array (Field Programmable Gate ArrayFPGA). In a top-down manner, a fully synchronous frequency measurement method with high precision is adopted. Each sub-module of frequency detection circuit is designed according to the specific working principle, and the function of each module is verified by simulation. Finally, the sub-module is connected to form the top-level module through the component example statement, and the top-level module is simulated by the top-level module. The simulation results are obtained under different input conditions of the measured signal frequency, and the correctness of the circuit function is verified.
【學(xué)位授予單位】:西南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李桂成;孫海濤;;激光警戒裝置及其信息檢測(cè)電路的研制[J];吉林工業(yè)大學(xué)學(xué)報(bào);1984年04期
2 胡亦鳴,謝長(zhǎng)生,,裴先登;雙頻比較法采樣頻混檢測(cè)電路[J];數(shù)據(jù)采集與處理;1994年01期
3 張友安,胡云安,王卓軍;一種實(shí)用的漏電檢測(cè)電路[J];自動(dòng)化與儀表;1995年01期
4 傅云鵬;最簡(jiǎn)單的檢測(cè)電路[J];電子技術(shù)應(yīng)用;1996年11期
5 陳賀新;;一種時(shí)序脈沖相關(guān)檢測(cè)電路的研究[J];吉林工業(yè)大學(xué)學(xué)報(bào);1984年02期
6 楊德印;;實(shí)驗(yàn)制作長(zhǎng)壽命電極水位檢測(cè)電路[J];電子制作;2004年08期
7 白澤生;白宗文;;一種簡(jiǎn)易光照度檢測(cè)電路的設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2006年11期
8 張佳薇;劉方;;高精度應(yīng)變檢測(cè)電路設(shè)計(jì)及誤差分析[J];自動(dòng)化儀表;2011年06期
9 龔劍波;一種機(jī)內(nèi)檢測(cè)電路[J];微電子學(xué);1997年01期
10 熊葵容,王玉琦,倪德儒;傳感器檢測(cè)電路研究[J];傳感器世界;1997年12期
相關(guān)會(huì)議論文 前4條
1 宋小鋒;楊成忠;;電子防盜標(biāo)簽檢測(cè)電路的參數(shù)優(yōu)化[A];浙江省信號(hào)處理學(xué)會(huì)2011學(xué)術(shù)年會(huì)論文集[C];2011年
2 張旭;王雪梅;衣彬;;新型智能液體擺傾角傳感器檢測(cè)電路設(shè)計(jì)[A];第十七屆全國(guó)測(cè)控計(jì)量?jī)x器儀表學(xué)術(shù)年會(huì)(MCMI'2007)論文集(下冊(cè))[C];2007年
3 徐玉存;;基于FPGA的多路同步觸發(fā)脈沖信號(hào)及脈沖檢測(cè)電路的研制[A];第三屆全國(guó)加速器技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2007年
4 張志虎;賈紅光;王宏宇;李明哲;汪東林;;某型檢測(cè)箱“電源檢測(cè)電路”存在的問(wèn)題及改進(jìn)[A];系統(tǒng)仿真技術(shù)及其應(yīng)用(第7卷)——'2005系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文選編[C];2005年
相關(guān)重要報(bào)紙文章 前8條
1 江西 曾海萍;床邊監(jiān)護(hù)儀體溫檢測(cè)電路的檢修[N];電子報(bào);2008年
2 西安 王平;一款長(zhǎng)壽命微功耗水位檢測(cè)電路[N];電子報(bào);2014年
3 成都 平平編譯;磁場(chǎng)檢測(cè)器[N];電子報(bào);2009年
4 山東 李國(guó)文;數(shù)顯16通道自動(dòng)巡回檢測(cè)電路[N];電子報(bào);2002年
5 ;帶保險(xiǎn)絲檢測(cè)電路的集成電路存儲(chǔ)器及其方法[N];中國(guó)有色金屬報(bào);2003年
6 吉林 孫德印;LG CF-29K92F彩電保護(hù)電路原理與維修[N];電子報(bào);2006年
7 福建 黃錦杰;一款電話遠(yuǎn)程遙控器的制作[N];電子報(bào);2009年
8 河北 索星紅;為萬(wàn)用表加裝紅外遙控器檢測(cè)電路[N];電子報(bào);2006年
相關(guān)碩士學(xué)位論文 前10條
1 任麗姣;基于CMOS的心電信號(hào)前端檢測(cè)電路的設(shè)計(jì)[D];黑龍江大學(xué);2015年
2 胡鵬飛;MEMS加速度計(jì)開(kāi)環(huán)檢測(cè)電路的設(shè)計(jì)[D];湘潭大學(xué);2015年
3 黃雨o
本文編號(hào):1525581
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1525581.html