一種用于人體運動捕獲的自適應混合濾波融合算法
發(fā)布時間:2018-02-16 11:06
本文關鍵詞: 傳感器 信息融合 高斯牛頓算法 互補濾波 人體運動捕獲 出處:《工程科學與技術》2017年05期 論文類型:期刊論文
【摘要】:針對基于慣性傳感器的人體運動捕獲系統(tǒng)存在陀螺漂移和噪聲干擾等問題,提出一種多元傳感器信息融合的自適應混合濾波融合算法。算法首先利用快速高斯牛頓法對加速度計和磁力計數(shù)據(jù)進行姿態(tài)信息迭代估算,用四元數(shù)將參考坐標系中的加速度和磁場強度分量轉換到載體坐標中,將轉換后的值與當前時刻測量值的差值代入高斯牛頓迭代算法中用于四元數(shù)的實時值估計,通過確定搜索步長的最優(yōu)值來縮短迭代次數(shù),提高算法收斂速度。設計自適應的互補濾波器將高斯牛頓法解算的姿態(tài)信息作為觀測矢量對陀螺漂移進行補償,分別使用高通濾波器和低通濾波器處理陀螺儀數(shù)據(jù)和高斯牛頓算法優(yōu)化過后的加速度計、磁力計數(shù)據(jù)。在互補濾波器中引入重力矢量及地磁參考矢量自適應調節(jié)濾波器參數(shù)用于實時調整不同算法的權重大小,融合后輸出最終的姿態(tài)信息,實現(xiàn)最優(yōu)估計。進行實驗對比分析本算法和其他算法融合效果,結果表明,本算法有效降低陀螺累積誤差、線性加速度及磁場對解算精度的干擾,磁干擾狀態(tài)下誤差為0.94°,自由運動狀態(tài)下誤差為1°。對比擴展卡爾曼濾波融合算法,本文算法執(zhí)行時間縮短25%,有效提升了運動捕獲系統(tǒng)的性能。
[Abstract]:Aiming at the problems of gyro drift and noise interference in the human motion capture system based on inertial sensor, An adaptive hybrid filtering fusion algorithm for multi-sensor information fusion is proposed. Firstly, the fast Gao Si Newton method is used to estimate the attitude information of accelerometers and magnetometers. The acceleration and magnetic field intensity components in the reference coordinate system are converted to the carrier coordinates by quaternions. The difference between the converted values and the measured values at the current time is substituted in the Gao Si Newton iterative algorithm for the real-time estimation of quaternions. By determining the optimal value of the search step size, the iteration times are shortened and the convergence rate of the algorithm is improved. An adaptive complementary filter is designed to compensate the gyro drift with the attitude information calculated by Gao Si Newton method as the observation vector. Using high-pass filter and low-pass filter respectively to process gyroscope data and the accelerometer optimized by Gao Si Newton algorithm, The parameters of gravity vector and geomagnetic reference vector are introduced into the complementary filter to adjust the weights of different algorithms in real time, and the final attitude information is output after fusion. The experimental results show that the proposed algorithm can effectively reduce the error of gyroscope accumulation, the interference of linear acceleration and magnetic field on the accuracy of the solution. The error is 0.94 擄in the state of magnetic interference and 1 擄in the state of free motion. Compared with the extended Kalman filter fusion algorithm, the execution time of this algorithm is shortened by 25%, which effectively improves the performance of the motion capture system.
【作者單位】: 重慶郵電大學光電信息感測與傳輸技術重慶市重點實驗室;
【基金】:國家自然科學基金資助項目(51175535) 國際聯(lián)合研究中心科技平臺與基地建設項目資助(cstc2014gjhz0038) 重慶市基礎與前沿研究計劃資助項目(cstc2015jcyj BX0068) 重慶郵電大學博士啟動基金資助項目(A2015-40);重慶郵電大學自然科學基金資助項目(A2015-49)
【分類號】:TN713;TP212
,
本文編號:1515364
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1515364.html
最近更新
教材專著