天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于盲動粒子群頻率分解的極速學習機神經(jīng)網(wǎng)絡(luò)建模

發(fā)布時間:2018-02-13 09:43

  本文關(guān)鍵詞: 建模 極速學習機(ELM)神經(jīng)網(wǎng)絡(luò) 頻率分解 盲動 粒子群優(yōu)化 出處:《信息與控制》2017年01期  論文類型:期刊論文


【摘要】:為了提高神經(jīng)網(wǎng)絡(luò)的泛化性,對輸入信號進行頻率分解.頻率分解相對提升了子頻帶的信息致密性,覆蓋全頻域的子頻帶,也保證了信息的遍歷性.高致密性和遍歷性有助于提高神經(jīng)網(wǎng)絡(luò)的泛化性.頻率分解由盲動粒子群優(yōu)化算法自動完成,粒子群算法和通常的神經(jīng)網(wǎng)絡(luò)算法都用迭代計算,但計算需耗費較長時間,而采用一次就完成學習的極速學習神經(jīng)網(wǎng)絡(luò)可以節(jié)省計算時間.仿真結(jié)果表明,該神經(jīng)網(wǎng)絡(luò)泛化性好、精度高能滿足一般工程應(yīng)用.
[Abstract]:In order to improve the generalization of the neural network, the input signal is decomposed with frequency decomposition, which improves the information density of the subband and covers the subband in the whole frequency domain. The high density and ergodicity are helpful to improve the generalization of neural network. The frequency decomposition is accomplished automatically by the blind particle swarm optimization algorithm, and the particle swarm optimization algorithm and the usual neural network algorithm are calculated iteratively. However, it takes a long time to calculate, and the computation time can be saved by using the extreme learning neural network which can complete the learning in one time. The simulation results show that the neural network has good generalization and high precision to meet the general engineering application.
【作者單位】: 廣東海洋大學信息學院;
【基金】:國家自然科學基金資助項目(61272534)
【分類號】:TP183

【相似文獻】

相關(guān)期刊論文 前10條

1 云中客;新的神經(jīng)網(wǎng)絡(luò)來自于仿生學[J];物理;2001年10期

2 唐春明,高協(xié)平;進化神經(jīng)網(wǎng)絡(luò)的研究進展[J];系統(tǒng)工程與電子技術(shù);2001年10期

3 李智;一種基于神經(jīng)網(wǎng)絡(luò)的煤炭調(diào)運優(yōu)化方法[J];長沙鐵道學院學報;2003年02期

4 程科,王士同,楊靜宇;新型模糊形態(tài)神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];計算機工程與應(yīng)用;2004年21期

5 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡(luò)推定操作者疲勞的研究[J];人類工效學;2004年03期

6 周麗暉;從統(tǒng)計角度看神經(jīng)網(wǎng)絡(luò)[J];統(tǒng)計教育;2005年06期

7 趙奇 ,劉開第 ,龐彥軍;灰色補償神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];微計算機信息;2005年14期

8 袁婷;;神經(jīng)網(wǎng)絡(luò)在股票市場預測中的應(yīng)用[J];軟件導刊;2006年05期

9 尚晉;楊有;;從神經(jīng)網(wǎng)絡(luò)的過去談科學發(fā)展觀[J];重慶三峽學院學報;2006年03期

10 楊鐘瑾;;神經(jīng)網(wǎng)絡(luò)的過去、現(xiàn)在和將來[J];青年探索;2006年04期

相關(guān)會議論文 前10條

1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學術(shù)年會論文集[C];1996年

2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動化會議論文集(上冊)[C];2003年

3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)會議論文集[C];2009年

4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年

5 鐘義信;;知識論:神經(jīng)網(wǎng)絡(luò)的新機遇——紀念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年

6 許進;保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年

7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預報產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預報應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學術(shù)會議論文集[C];1999年

8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學生創(chuàng)造力評估中的應(yīng)用[A];第十二屆全國心理學學術(shù)大會論文摘要集[C];2009年

9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年

10 張廣遠;萬強;曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學術(shù)會議論文集[C];2010年

相關(guān)重要報紙文章 前10條

1 美國明尼蘇達大學社會學博士 密西西比州立大學國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報;2014年

2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機世界;2001年

3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報;2003年

4 中國科技大學計算機系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計算機世界;2003年

5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復雜工藝“黑箱”[N];解放日報;2007年

6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡(luò)[N];科技日報;2011年

7 健康時報特約記者  張獻懷;干細胞移植:修復受損的神經(jīng)網(wǎng)絡(luò)[N];健康時報;2006年

8 劉力;我半導體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達國際先進水平[N];中國電子報;2001年

9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導報;2002年

10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國船舶報;2006年

相關(guān)博士學位論文 前10條

1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學;2004年

2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學;2015年

3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學;2014年

4 王新迎;基于隨機映射神經(jīng)網(wǎng)絡(luò)的多元時間序列預測方法研究[D];大連理工大學;2015年

5 付愛民;極速學習機的訓練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學;2015年

6 李輝;基于粒計算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學;2015年

7 王衛(wèi)蘋;復雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學;2015年

8 張海軍;基于云計算的神經(jīng)網(wǎng)絡(luò)并行實現(xiàn)及其學習方法研究[D];華南理工大學;2015年

9 李艷晴;風速時間序列預測算法研究[D];北京科技大學;2016年

10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學;2015年

相關(guān)碩士學位論文 前10條

1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預測的研究[D];華南理工大學;2015年

2 賈文靜;基于改進型神經(jīng)網(wǎng)絡(luò)的風力發(fā)電系統(tǒng)預測及控制研究[D];燕山大學;2015年

3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學;2015年

4 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學;2015年

5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學;2015年

6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學;2015年

7 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預測研究[D];華南理工大學;2015年

8 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預測研究與系統(tǒng)實現(xiàn)[D];華南理工大學;2015年

9 張韜;幾類時滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學;2015年

10 邵雪瑩;幾類時滯不確定神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];渤海大學;2015年



本文編號:1507865

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1507865.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2bac2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com