基于紅外吸收光譜的設(shè)施園藝二氧化碳檢測系統(tǒng)的研究
本文關(guān)鍵詞: 紅外吸收光譜 CO_2濃度檢測 無線傳感器網(wǎng)絡(luò) 設(shè)施園藝 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本論文來源于國家科技支撐計(jì)劃項(xiàng)目“現(xiàn)代節(jié)能高效設(shè)施園藝裝備研制與產(chǎn)業(yè)化示范”,項(xiàng)目編號(hào):2014BAD08B00。設(shè)施園藝克服了傳統(tǒng)種植方式的缺點(diǎn),不易受地域、自然環(huán)境和氣候等因素的限制,實(shí)現(xiàn)了高產(chǎn)、優(yōu)質(zhì)的目的,對(duì)農(nóng)業(yè)的發(fā)展具有重大意義。CO_2作為植物光合作用的重要原料,其濃度的大小對(duì)溫室大棚內(nèi)農(nóng)作物的生長具有重要的影響,因此檢測溫室大棚內(nèi)CO_2的濃度十分必要。在眾多的CO_2檢測方法中,紅外吸收光譜法因其獨(dú)特的優(yōu)勢(shì)得到了人們的普遍關(guān)注和廣泛應(yīng)用。此外,構(gòu)建無線傳感器網(wǎng)絡(luò)能多點(diǎn)采集溫室大棚內(nèi)的CO_2濃度,且克服了有線傳輸?shù)谋锥。本論文研究了基于紅外吸收光譜法的設(shè)施園藝CO_2檢測系統(tǒng)。分析CO_2分子的紅外吸收光譜,選擇4.25μm附近的強(qiáng)基頻吸收峰作為CO_2分子的吸收波長,選擇適宜的紅外熱光源和雙通道熱釋電探測器,并采用球面反射鏡增加光程的同時(shí)將光線匯聚至探測器,很好地優(yōu)化了光路結(jié)構(gòu)。設(shè)計(jì)制作了光源的恒流源驅(qū)動(dòng)電路、信號(hào)處理電路和無線通信電路等硬件電路。為了適應(yīng)溫室中的高濕環(huán)境,密閉封裝光路和電路部分,光路中氣體的擴(kuò)散通過膨化聚四氟乙烯薄膜實(shí)現(xiàn)。編寫了系統(tǒng)的軟件程序,程序包含濃度采集和無線傳感器網(wǎng)絡(luò)兩部分,CO_2濃度檢測節(jié)點(diǎn)采集數(shù)據(jù)以后加入無線傳感器網(wǎng)絡(luò),并將采集的數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送至匯聚節(jié)點(diǎn),最后匯聚節(jié)點(diǎn)通過串口將數(shù)據(jù)傳輸給計(jì)算機(jī),計(jì)算機(jī)顯示并存儲(chǔ)得到的數(shù)據(jù)。配置了不同濃度的CO_2氣體樣品進(jìn)行氣體實(shí)驗(yàn),完成了傳感器的標(biāo)定和相關(guān)性能的檢測。CO_2傳感器的檢測范圍是0~5000 ppm;在150~5000 ppm范圍內(nèi),測量值的相對(duì)誤差在-6.0%~9.9%之間;測量了傳感器在0 ppm時(shí)的長時(shí)間穩(wěn)定性,濃度上下波動(dòng)峰值是15 ppm,標(biāo)準(zhǔn)差為2.8ppm;計(jì)算傳感器在0 ppm時(shí)輸出結(jié)果的艾倫方差,得到傳感器的1σ檢測下限為2.5 ppm。在溫室中運(yùn)用該檢測系統(tǒng)對(duì)CO_2濃度進(jìn)行實(shí)際測量,得到的曲線與實(shí)際相符,從而驗(yàn)證了該檢測系統(tǒng)能夠較好地應(yīng)用于溫室大棚內(nèi)CO_2濃度的檢測中。本論文的創(chuàng)新點(diǎn)包含兩點(diǎn),一是利用自制的反射鏡氣室和差分中紅外吸收光譜技術(shù),研制了紅外CO_2傳感器,并對(duì)傳感器進(jìn)行防濕處理以適應(yīng)溫室大棚內(nèi)高濕的環(huán)境;二是結(jié)合無線射頻通信技術(shù)構(gòu)建無線CO_2傳感器網(wǎng)絡(luò),實(shí)現(xiàn)對(duì)溫室大棚內(nèi)CO_2濃度的多點(diǎn)檢測,并利用研制的CO_2檢測系統(tǒng)在日光溫室大棚中開展了現(xiàn)場試驗(yàn)。
[Abstract]:This paper comes from the national science and technology support project "modern energy-saving and efficient facilities horticultural equipment development and industrialization demonstration". Project number: 2014BAD08B00. facility horticulture overcomes the shortcomings of traditional planting methods and is not easy to be restricted by such factors as region, natural environment and climate, thus achieving the goal of high yield and good quality. It is of great significance to the development of agriculture. As an important raw material of plant photosynthesis, the concentration of COS _ 2 has an important influence on the growth of crops in greenhouse. Therefore, it is very necessary to detect the concentration of CO_2 in greenhouse. Among many CO_2 detection methods, infrared absorption spectrometry has been widely concerned and widely used because of its unique advantages. The wireless sensor network can collect the concentration of CO_2 in greenhouse. And overcome the shortcomings of cable transmission. This paper studied the facility horticultural CO_2 detection system based on infrared absorption spectrometry. The infrared absorption spectra of CO_2 molecules were analyzed. The strong fundamental frequency absorption peak near 4.25 渭 m is chosen as the absorption wavelength of CO_2 molecule, and the suitable infrared pyroelectric source and two-channel pyroelectric detector are selected. The spherical mirror is used to increase the optical path and the light is converged to the detector, which optimizes the structure of the optical path. The constant current source driving circuit of the light source is designed and fabricated. Hardware circuits such as signal processing circuits and wireless communication circuits. In order to adapt to the high humidity environment in the greenhouse, the optical circuit and circuit parts are sealed. The diffusion of gas in the optical path is realized through expanded PTFE thin film. The software program of the system consists of two parts: concentration acquisition and wireless sensor network. The data collected by the CO_2 concentration detection node is added to the wireless sensor network, and the collected data is sent to the convergence node through the network. Finally, the data is transmitted to the computer through the serial port. The computer displays and stores the obtained data. Different concentrations of CO_2 gas samples are configured to carry out gas experiments. The calibration of the sensor and the detection of the related performance. The detection range of the CO2 sensor is 0 ~ 5000 ppm; In the range of 150 ~ 5000 ppm, the relative error of the measured value is -6.0% or 9.9%. The stability of the sensor for a long time at 0 ppm was measured. The peak value of concentration fluctuation was 15 ppmand the standard deviation was 2.8 ppm. By calculating the Allen variance of the sensor output at 0 ppm, the 1 蟽 detection limit of the sensor is 2. 5 ppm. The system is used to measure the concentration of CO_2 in greenhouse. The obtained curves are in good agreement with the practice, which proves that the system can be applied to the detection of CO_2 concentration in greenhouse. The innovation of this paper includes two points. First, the infrared CO_2 sensor is developed by using self-made reflector chamber and differential mid-infrared absorption spectrum technology, and the sensor is moisturized in order to adapt to the high humidity environment in greenhouse. The other is to construct wireless CO_2 sensor network with radio frequency communication technology to realize the multi-point detection of CO_2 concentration in greenhouse. The field test was carried out in the greenhouse by using the developed CO_2 detection system.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 涂志華;趙陽;鄭力文;賈國棟;陳麗華;余新曉;;基于非分散紅外(NDIR)技術(shù)的土壤剖面二氧化碳濃度的測定[J];光譜學(xué)與光譜分析;2015年04期
2 宋光林;羅運(yùn)軍;李晉慶;譚紅;;紅外光譜法測定精四氯化鈦中二氧化碳的含量(英文)[J];光譜學(xué)與光譜分析;2015年03期
3 李國林;董明;宋楠;宋芳;鄭傳濤;王一丁;;基于中紅外光譜吸收技術(shù)的一氧化碳?xì)怏w檢測系統(tǒng)[J];光譜學(xué)與光譜分析;2014年10期
4 黨敬民;付麗;閆紫徽;鄭傳濤;常玉春;陳晨;王一丁;;基于紅外光譜技術(shù)的混合氣體檢測系統(tǒng)概述[J];光譜學(xué)與光譜分析;2014年10期
5 沈明霞;劉政;熊迎軍;孫玉文;陸明洲;劉龍申;;雙電源架構(gòu)的低功耗溫室環(huán)境感知節(jié)點(diǎn)設(shè)計(jì)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年11期
6 徐茂;鄧蓉;;國內(nèi)外設(shè)施農(nóng)業(yè)發(fā)展的比較[J];北京農(nóng)學(xué)院學(xué)報(bào);2014年02期
7 宋芳;李國林;宋楠;鄭傳濤;王一丁;;Design and implementation of differential mid-infrared carbon monoxide detector[J];Optoelectronics Letters;2013年05期
8 陳子聰;高致慧;曹志;楊勇;鐘德輝;;基于中紅外LED的CO_2氣體濃度檢測系統(tǒng)研究[J];激光與紅外;2012年11期
9 李中華;王國占;齊飛;;我國設(shè)施農(nóng)業(yè)發(fā)展現(xiàn)狀及發(fā)展思路[J];中國農(nóng)機(jī)化;2012年01期
10 張瑞瑞;趙春江;陳立平;徐剛;;農(nóng)田信息采集無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)設(shè)計(jì)[J];農(nóng)業(yè)工程學(xué)報(bào);2009年11期
相關(guān)博士學(xué)位論文 前3條
1 李春光;基于中紅外半導(dǎo)體激光器的氣體檢測系統(tǒng)的研制[D];吉林大學(xué);2016年
2 張偉;面向精細(xì)農(nóng)業(yè)的無線傳感器網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];浙江大學(xué);2013年
3 高峰;基于無線傳感器網(wǎng)絡(luò)的設(shè)施農(nóng)業(yè)環(huán)境自動(dòng)監(jiān)控系統(tǒng)研究[D];浙江工業(yè)大學(xué);2009年
,本文編號(hào):1472950
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1472950.html