大口徑金屬螺旋管內(nèi)壁焊縫自動(dòng)跟蹤打磨機(jī)器人的研制
本文關(guān)鍵詞:大口徑金屬螺旋管內(nèi)壁焊縫自動(dòng)跟蹤打磨機(jī)器人的研制 出處:《東華大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 管道機(jī)器人 結(jié)構(gòu)設(shè)計(jì) 有限元分析 動(dòng)力學(xué)仿真 大口徑螺旋管
【摘要】:隨著國(guó)家發(fā)展資源整合戰(zhàn)略性布局的持續(xù)推進(jìn),管路運(yùn)輸業(yè)對(duì)大口徑螺旋管的需求量明顯增加。為便于大口徑金屬螺旋管內(nèi)壁噴涂處理,提高內(nèi)壁表面質(zhì)量,延長(zhǎng)其使用壽命,需要對(duì)焊接后的管道內(nèi)壁焊縫進(jìn)行打磨。目前國(guó)內(nèi)制管行業(yè)范圍內(nèi)通常使用人工手持角磨機(jī)作業(yè),不但效率低下且不能保證打磨精度,并且嚴(yán)重危害工人身體健康。國(guó)外相關(guān)設(shè)備屬于受限進(jìn)口的特殊管道機(jī)器人,采購(gòu)難度大,性價(jià)比太低而不宜采用。為此,根據(jù)相關(guān)企業(yè)要求,開發(fā)并設(shè)計(jì)一種用于大口徑金屬螺旋管內(nèi)壁焊縫自動(dòng)跟蹤打磨的管道機(jī)器人,對(duì)提高螺旋管內(nèi)壁焊縫打磨質(zhì)量和作業(yè)效率、保障打磨工序一線操作工的身心健康和降低人力成本等具有重要意義和深遠(yuǎn)影響。本文的主要研究?jī)?nèi)容如下:(1)簡(jiǎn)要介紹了大口徑螺旋管的應(yīng)用背景以及國(guó)內(nèi)外管道內(nèi)作業(yè)特種機(jī)器人的研究現(xiàn)狀,闡述了本文的研究?jī)?nèi)容和方法;(2)分析大口徑螺旋管內(nèi)壁焊縫分布形態(tài)情況和焊縫打磨技術(shù)要求,提出和設(shè)計(jì)了分段作業(yè)的“拼接式”打磨工藝;(3)開展了管道機(jī)器人的總體設(shè)計(jì)和造型,其中包括:機(jī)器人主體支撐裝置、三軸回轉(zhuǎn)作業(yè)裝置、打磨進(jìn)給裝置和智能檢測(cè)模塊。完成了支撐機(jī)構(gòu)和驅(qū)動(dòng)傳動(dòng)機(jī)構(gòu)的詳細(xì)設(shè)計(jì),并對(duì)重要電氣元部件選型校核;(4)設(shè)計(jì)了管道機(jī)器人打磨控制系統(tǒng),包括了焊縫自動(dòng)跟蹤子系統(tǒng)、恒力打磨控制子系統(tǒng)、多工位分段作業(yè)的“二次接刀”控制子系統(tǒng)。(5)利用SolidWorks/Simulation模塊對(duì)管道機(jī)器人的機(jī)械機(jī)構(gòu)進(jìn)行了有限元分析,得到了關(guān)鍵受力結(jié)構(gòu)件在載荷作用下形態(tài)特征,如空心回轉(zhuǎn)軸和支撐安裝機(jī)殼的受力變形情況在合理的區(qū)間范圍,從而驗(yàn)證了機(jī)械結(jié)構(gòu)設(shè)計(jì)的合理性和選材的可靠性;(6)基于多體動(dòng)力學(xué)仿真平臺(tái)ADAMS,開展了管道機(jī)器人在管道內(nèi)支撐作業(yè)的運(yùn)動(dòng)仿真,通過在各個(gè)支撐腿上預(yù)設(shè)傳感器獲得了在空間中標(biāo)記點(diǎn)的坐標(biāo)移動(dòng)圖像。分析并驗(yàn)證了三足電動(dòng)支撐設(shè)計(jì)的可行性;
[Abstract]:With the continuous promotion of the strategic layout of national development resources integration, the demand for large diameter spiral pipe in pipeline transportation industry is obviously increased. In order to facilitate the spray treatment of the inner wall of large caliber metal spiral pipe, the surface quality of inner wall is improved. In order to prolong its service life, it is necessary to polish the welded pipe inner wall weld. At present, manual handheld angle grinder is usually used in the domestic pipe making industry, which is not only inefficient but also can not guarantee the grinding accuracy. And serious harm to the health of workers. Foreign related equipment is a restricted import of special pipeline robots, procurement is difficult, the ratio of performance to price is too low to use. Therefore, according to the requirements of relevant enterprises. A pipe robot is developed and designed for automatic tracking and grinding of large diameter metal spiral tube inner weld, which can improve the quality and working efficiency of the inner wall welding seam of spiral pipe. It is of great significance and far-reaching influence to ensure the physical and mental health of the workers in the grinding process and to reduce the labor cost. The main contents of this paper are as follows: 1). This paper briefly introduces the application background of large caliber helical pipe and the research status of special robot in pipeline operation at home and abroad. The research contents and methods of this paper are expounded. 2) analyzing the distribution of weld seam on the inner wall of large diameter helical pipe and the technical requirements of welding seam grinding, and putting forward and designing the "splicing" grinding technology for segmental operation; The overall design and modeling of the pipeline robot are carried out, including: the main body support device of the robot, the three-axis rotary operation device. Grinding feed device and intelligent detection module. Completed the detailed design of supporting mechanism and driving drive mechanism, and checked the selection of important electrical components; The grinding control system of pipeline robot is designed, which includes automatic seam tracking subsystem and constant force grinding control subsystem. The "secondary cutter" control subsystem. 5) the finite element analysis of the mechanical mechanism of pipeline robot is carried out by using SolidWorks/Simulation module. The shape characteristics of the key structural parts under load are obtained, such as the deformation of the hollow rotary shaft and the supporting mounting housing in a reasonable range. The rationality of mechanical structure design and the reliability of material selection are verified. Based on the multi-body dynamics simulation platform, Adams, the kinematic simulation of pipeline robot in pipeline is carried out. The coordinate moving images of marking points in space are obtained by preset sensors on each support leg, and the feasibility of tripodal electric support design is analyzed and verified.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邵琦;謝哲東;;管道機(jī)器人的發(fā)展與展望[J];農(nóng)業(yè)與技術(shù);2016年05期
2 LI Te;MA ShuGen;LI Bin;WANG MingHui;WANG YueChao;;Axiomatic design method to design a screw drive in-pipe robot passing through varied curved pipes[J];Science China(Technological Sciences);2016年02期
3 王惠華;游福成;段懷鋒;閆濤;卜文斌;;基于二值圖像連通域提取的圖像濾波方法[J];北京印刷學(xué)院學(xué)報(bào);2015年06期
4 LI Te;MA Shugen;LI Bin;WANG Minghui;WANG Yuechao;;Fuzzy Theory Based Control Method for an In-pipe Robot to Move in Variable Resistance Environment[J];Chinese Journal of Mechanical Engineering;2015年06期
5 郭建慧;;電氣設(shè)計(jì)鋼管的類型及應(yīng)用[J];科技創(chuàng)新導(dǎo)報(bào);2015年21期
6 胡曉霞;肖秦琨;;基于多組合內(nèi)容的圖像識(shí)別機(jī)制[J];電子設(shè)計(jì)工程;2015年08期
7 Bin Li;于波;Xiao-long Wang;郭峰;Feng Zhou;;Correlation between Conformation Change of Polyelectrolyte Brushes and Lubrication[J];Chinese Journal of Polymer Science;2015年01期
8 陳暢;;大功率短波發(fā)射機(jī)自動(dòng)調(diào)諧步進(jìn)電機(jī)工作原理與維護(hù)[J];內(nèi)蒙古廣播與電視技術(shù);2014年04期
9 呂德深;梁承權(quán);;基于STC12C5A60S2與PID算法的數(shù)控電源的設(shè)計(jì)與實(shí)現(xiàn)[J];電子設(shè)計(jì)工程;2014年09期
10 蔣若蓉;李文亞;羅賢道;楊茜;;熱輸入對(duì)7075鋁合金攪拌摩擦焊接頭質(zhì)量的影響[J];電焊機(jī);2014年04期
相關(guān)碩士學(xué)位論文 前10條
1 羅潔;管道攀爬機(jī)器人結(jié)構(gòu)設(shè)計(jì)及行走動(dòng)力特性分析[D];武漢科技大學(xué);2015年
2 馬利平;牽引式排水管道清淤機(jī)器人的研究[D];華北理工大學(xué);2015年
3 周慧珍;先導(dǎo)平衡式高壓氣動(dòng)比例減壓閥結(jié)構(gòu)設(shè)計(jì)與特性分析[D];蘭州理工大學(xué);2014年
4 趙琦;X射線實(shí)時(shí)成像檢測(cè)管外掃查器研究[D];東北石油大學(xué);2013年
5 艾超;基于方向小波變換的圖像邊緣檢測(cè)算子研究[D];西安電子科技大學(xué);2013年
6 任朝棟;基于視頻的車輛檢測(cè)跟蹤系統(tǒng)中圖像預(yù)處理算法的研究[D];鄭州大學(xué);2011年
7 王文麗;各種圖像邊緣提取算法的研究[D];北京交通大學(xué);2010年
8 王召利;特殊管道彎曲度測(cè)量中的圖像處理技術(shù)[D];西安電子科技大學(xué);2010年
9 謝惠祥;伸縮式管道機(jī)器人動(dòng)力學(xué)建模與控制系統(tǒng)設(shè)計(jì)[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
10 譙正武;管道內(nèi)表面處理機(jī)器人結(jié)構(gòu)設(shè)計(jì)及運(yùn)動(dòng)穩(wěn)定性研究[D];蘭州理工大學(xué);2009年
,本文編號(hào):1439971
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1439971.html