基于西門子S7-300PLC沼氣發(fā)電控制系統(tǒng)的設計與實現(xiàn)
本文關鍵詞:基于西門子S7-300PLC沼氣發(fā)電控制系統(tǒng)的設計與實現(xiàn) 出處:《北方民族大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 沼氣 控制 PLC PID算法 厭氧發(fā)酵
【摘要】:隨著國家能源經(jīng)濟的高速發(fā)展,可再生能源受到了越來越多的關注。沼氣作為一種制取方法簡單、原料易獲得的可再生能源,已廣泛應用到各個領域。目前,國內的沼氣產(chǎn)業(yè)多以農(nóng)村戶用沼氣為主,沼氣產(chǎn)氣率低,發(fā)酵底物的清理耗時耗力,一旦通風不徹底很容易發(fā)生事故。清理沼氣池時周圍工作環(huán)境不好,很多沼氣池都在一個發(fā)酵周期后便廢棄不用,這造成了我國沼氣產(chǎn)業(yè)在表面上規(guī)模大,實際上利用率低的現(xiàn)象。本文通過自動化技術,實現(xiàn)沼氣高效率生產(chǎn)、規(guī);、發(fā)酵底物產(chǎn)業(yè)化、燃燒廢熱環(huán);。通過本設計,生產(chǎn)的沼氣經(jīng)過綜合性多階次利用,最大化的實現(xiàn)了變廢為寶。本系統(tǒng)開發(fā)包括兩部分:上位機控制部分的開發(fā)和下位機執(zhí)行部分的開發(fā)。上位機控制部分由工業(yè)控制計算機參與使用MCGS組態(tài)軟件開發(fā)監(jiān)控畫面,使用STEP7軟件開發(fā)PLC控制程序;下位機執(zhí)行部分是由SP307、CPU315、DI、DO、AI、AO、IM360、IM361等部件組成的S7-300PLC硬件控制核心對閥門、泵等現(xiàn)場元件進行控制。通過系統(tǒng)控制可以實現(xiàn)沼氣生產(chǎn)和沼氣使用的遠程控制、精確監(jiān)視,使整個生產(chǎn)過程安全高效運行。本系統(tǒng)使用大量工業(yè)化網(wǎng)絡,對生產(chǎn)過程進行實時監(jiān)視,實時控制,實現(xiàn)了現(xiàn)場與控制室的同步顯示。通過對現(xiàn)場溫度、高度、流量、壓力等數(shù)據(jù)的實時采集、分析和存儲,從而保證數(shù)據(jù)實時存儲、真實可查,為數(shù)據(jù)分析工藝升級做準備。另外系統(tǒng)設置多重措施,實現(xiàn)早預警早報警,保證系統(tǒng)安全有效生產(chǎn)。為保證沼氣產(chǎn)氣量穩(wěn)定、滿足沼氣發(fā)電機穩(wěn)定產(chǎn)電且適合并網(wǎng)的要求,本論文著重研究了改進PID算法,并利用MATLAB軟件分析比較了多種算法的優(yōu)劣,最終選定了可實現(xiàn)且調節(jié)效果明顯的Smith預估器與模糊自適應相結合的方法作為厭氧發(fā)酵系統(tǒng)恒溫控制方法。
[Abstract]:With the rapid development of national energy economy, more and more attention has been paid to renewable energy. As a kind of renewable energy, biogas, as a simple method of production and easy to obtain raw materials, has been widely used in various fields. The domestic biogas industry is mostly rural household biogas, biogas production rate is low, fermentation substrate cleaning time and energy, once ventilation is not completely easy to accident. Cleaning biogas digesters around the working environment is not good. Many biogas digesters are abandoned after a fermentation cycle, which results in the phenomenon that the biogas industry in China is large on the surface, but the utilization ratio is low. In this paper, the efficient production of biogas is realized through automation technology. Scale utilization, fermentation substrate industrialization, combustion waste heat environmental protection. Through this design, the production of biogas through comprehensive multi-stage utilization. The development of this system includes two parts:. The development of the upper computer control part and the development of the lower computer executive part. The upper computer control part by the industrial control computer to participate in the use of MCGS configuration software to develop the monitoring screen. Using STEP7 software to develop PLC control program; The implementation of the lower computer consists of the S7-300 PLC hardware control core valve composed of components such as SP307C CPU315C DIDON AIAOAO IM360 IM361 and so on. The remote control of biogas production and use of biogas can be realized through system control, which can make the whole production process run safely and efficiently. A large number of industrial networks are used in the system. The production process is monitored and controlled in real time, and the synchronous display between the field and the control room is realized. The data of temperature, height, flow rate and pressure are collected, analyzed and stored in real time. In order to ensure the real-time storage of data, the real can be checked, for the data analysis process to prepare for upgrading. In addition, the system set up multiple measures to achieve early warning and early warning. In order to ensure the stability of biogas production and meet the requirements of stable power generation and grid connection of biogas generator, this paper focuses on the improved PID algorithm. The advantages and disadvantages of various algorithms are analyzed and compared by using MATLAB software. Finally, the Smith predictor and fuzzy adaptive method which can be realized and adjusted obviously are selected as the constant temperature control method of anaerobic fermentation system.
【學位授予單位】:北方民族大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP273;TM611.25
【參考文獻】
相關期刊論文 前10條
1 李偉;吳樹彪;Hamidou Bah;龐昌樂;董仁杰;;沼氣工程高效穩(wěn)定運行技術現(xiàn)狀及展望[J];農(nóng)業(yè)機械學報;2015年07期
2 何周蓉;;沼氣產(chǎn)業(yè)發(fā)展的稅收補貼政策支持[J];中國沼氣;2015年01期
3 Fu-Cai Liu;Li-Huan Liang;Juan-Juan Gao;;Fuzzy PID Control of Space Manipulator for Both Ground Alignment and Space Applications[J];International Journal of Automation & Computing;2014年04期
4 吳檬檬;于干;林春綿;;沼氣脫硫技術研究進展[J];可再生能源;2012年10期
5 ;Smith Prediction Monitor AGC System Based on Fuzzy Self-Tuning PID Control[J];Journal of Iron and Steel Research(International);2010年02期
6 李軼冰;白潔瑞;楊改河;李勇;郭歐燕;任廣鑫;;沼氣產(chǎn)量影響因子研究[J];西北農(nóng)林科技大學學報(自然科學版);2009年05期
7 王延鋒;;發(fā)電機和電網(wǎng)的相序測定和并網(wǎng)操作[J];山東冶金;2008年06期
8 王占宜;蓋瓊瓊;;6105沼氣發(fā)電機組的研制[J];內燃機與動力裝置;2008年04期
9 平全榮;楊鵬飛;靳永麗;李曉花;;農(nóng)村戶用沼氣發(fā)展中存在的問題及對策[J];山西農(nóng)業(yè)科學;2007年11期
10 ;A complex control system based on the fuzzy PID control and state predictor feedback control[J];Journal of University of Science and Technology Beijing(English Edition);2004年01期
相關碩士學位論文 前10條
1 黃旺洲;高效纖維素分解菌群對豬糞和牛糞降解能力與除臭效果的影響[D];甘肅農(nóng)業(yè)大學;2016年
2 劉弘博;CSTR集中型沼氣工程建設運行成本比較研究[D];西南大學;2013年
3 傅博;激勵政策下清潔能源項目投資決策方法研究[D];中國地質大學(北京);2013年
4 辛睿德;基于PLC的沼氣發(fā)酵監(jiān)控與數(shù)據(jù)采集系統(tǒng)設計[D];華中農(nóng)業(yè)大學;2013年
5 孔蕊;牛糞厭氧消化產(chǎn)沼氣工藝研究[D];山東大學;2012年
6 李勇;沼氣發(fā)電中控系統(tǒng)的設計與應用[D];華南理工大學;2012年
7 張龍平;電控沼氣單燃料發(fā)動機匹配與試驗研究[D];西華大學;2012年
8 陳慧敏;農(nóng)村沼氣發(fā)展的政策研究[D];中南大學;2009年
9 黎良新;大中型沼氣工程的沼氣凈化技術研究[D];廣西大學;2007年
10 李維斌;潛水攪拌器的設計理論與實驗研究[D];江蘇大學;2003年
,本文編號:1437635
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1437635.html