一類網(wǎng)絡(luò)控制系統(tǒng)的亂序與量化反饋控制研究
本文關(guān)鍵詞:一類網(wǎng)絡(luò)控制系統(tǒng)的亂序與量化反饋控制研究 出處:《浙江理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 網(wǎng)絡(luò)控制系統(tǒng) 網(wǎng)絡(luò)誘導(dǎo)時(shí)延 數(shù)據(jù)包亂序 補(bǔ)償控制 量化反饋控制
【摘要】:隨著現(xiàn)代科技在軍事、工業(yè)、商業(yè)領(lǐng)域不斷滲透與發(fā)展,傳統(tǒng)點(diǎn)對(duì)點(diǎn)的控制系統(tǒng)已經(jīng)不能滿足人們?nèi)找姘l(fā)展的需求,因此需要一種新的控制系統(tǒng)來(lái)彌補(bǔ)傳統(tǒng)控制系統(tǒng)的不足,進(jìn)而促進(jìn)了網(wǎng)絡(luò)控制系統(tǒng)的發(fā)展。網(wǎng)絡(luò)控制系統(tǒng)是一種將分布在空間中不同位置的系統(tǒng)元件如傳感器、控制器、執(zhí)行器等,通過(guò)實(shí)時(shí)網(wǎng)絡(luò)連接的反饋控制系統(tǒng)。這種基于網(wǎng)絡(luò)的控制系統(tǒng)具有成本低、接線少、安裝維護(hù)方便、可遠(yuǎn)程操作和控制等優(yōu)勢(shì)。但是,由于在控制回路中加入了通信網(wǎng)絡(luò),給系統(tǒng)帶來(lái)了許多新的問題與挑戰(zhàn),如網(wǎng)絡(luò)誘導(dǎo)時(shí)延、數(shù)據(jù)包丟失與亂序、量化等,這些問題會(huì)不同程度地影響系統(tǒng)的控制性能甚至破環(huán)系統(tǒng)的穩(wěn)定性。目前,對(duì)網(wǎng)絡(luò)控制系統(tǒng)課題的研究已成為了國(guó)內(nèi)外控制領(lǐng)域的一個(gè)研究熱點(diǎn)。本文主要從系統(tǒng)的建模、穩(wěn)定性分析、控制器設(shè)計(jì)三個(gè)方面分別對(duì)網(wǎng)絡(luò)控制系統(tǒng)中的數(shù)據(jù)包亂序問題和量化問題進(jìn)行了研究,主要工作總結(jié)如下:第一:針對(duì)一類網(wǎng)絡(luò)控制系統(tǒng)中出現(xiàn)的數(shù)據(jù)包亂序問題,提出了一種補(bǔ)償控制方法以消除數(shù)據(jù)包亂序?qū)ο到y(tǒng)的不利影響。首先利用時(shí)間戳(time-stamp)方法對(duì)從源節(jié)點(diǎn)發(fā)送的數(shù)據(jù)包時(shí)間序列進(jìn)行標(biāo)記,再在控制器和執(zhí)行器端分別設(shè)置一個(gè)比較器,兩者結(jié)合來(lái)判斷數(shù)據(jù)包是否發(fā)生亂序,若亂序則對(duì)數(shù)據(jù)包做相應(yīng)處理,這使得用于被控對(duì)象的控制信號(hào)總保持最新,閉環(huán)系統(tǒng)被建模成一個(gè)Markov跳變系統(tǒng)。運(yùn)用Lyapunov穩(wěn)定性理論得到了系統(tǒng)隨機(jī)穩(wěn)定的充要條件,這個(gè)條件用一組具有逆約束的線性矩陣不等式(LMIs)表示。將控制器設(shè)計(jì)問題轉(zhuǎn)化為線性矩陣不等式的凸優(yōu)化問題,利用錐補(bǔ)線性化算法(CCL)得到了狀態(tài)反饋控制器的增益。第二:討論了網(wǎng)絡(luò)誘導(dǎo)時(shí)延和信號(hào)量化對(duì)網(wǎng)絡(luò)控制系統(tǒng)的影響,基于對(duì)數(shù)量化反饋控制器和零階保持器的工作機(jī)制,利用扇形界方法,將系統(tǒng)建模成帶有輸入時(shí)延的不確定時(shí)滯系統(tǒng)。其中,在系統(tǒng)的反饋通道和前饋通道分別加入了對(duì)數(shù)量化器,采用時(shí)延依賴的Lyapunov-Krasovskii泛函方法,得到了系統(tǒng)的穩(wěn)定性判據(jù),這個(gè)穩(wěn)定性條件是以兩個(gè)線性矩陣不等式(LMIs)給出的。設(shè)計(jì)量化反饋控制器使得系統(tǒng)漸近穩(wěn)定,并指出量化器的量化密度直接影響系統(tǒng)的控制性能。最后給出了數(shù)值仿真示例驗(yàn)證了此方法的有效性。
[Abstract]:With the development of modern science and technology in the military, industrial, commercial areas continue to penetrate and develop the traditional point-to-point control systems have been unable to meet the growing demand of development, so we need a new control system to make up for the deficiencies of the traditional control system, and promote the development of the network control system. Networked control system is a kind of distribution in the space position of different system components such as sensors, controllers, actuators, through real-time network connection of the feedback control system. This control system based on network has the advantages of low cost, less wiring, convenient installation and maintenance, remote operation and control. However, due to the addition of the communication network in the control loop, bring many new problems and challenges to the system, such as network induced delay, packet loss and disorder, quantification, these problems will affect the control performance of the system even The stability of broken ring system. At present, the research on control system of project network has become a research hotspot in control field. This paper mainly from the stability analysis of system modeling, controller design, three respectively on the network control system of packet reordering problem and the quantization problem is studied, the main summary of the work are as follows: first, aiming at the problem of disorder there is a kind of network control system in data packets, a compensation control method to eliminate the adverse effect of packet reordering on the system. Firstly, the timestamp (time-stamp) method for packet time from the source node sends the data sequence tag, then set a comparator in the controller and the actuator side, both to determine whether the packet reordering occurs, if the order of packets corresponding treatment, which makes the total control signal for a controlled object Keep up-to-date, the closed-loop system is modeled as a Markov jump system. Using the Lyapunov stability theory, sufficient and necessary conditions for the stochastic stability of system is obtained. This condition with a set of linear matrix inequalities with inverse constraints (LMIs). The controller design problem is transformed into a convex optimization problem with linear matrix inequalities, using cone complementary linearization algorithm (CCL) to get the state feedback controller gain. Second: discuss the network induced time delay and signal quantization effects on the network control system, quantization feedback controller and the zero order holder working mechanism based on using the sector bound approach, the system is modeled as uncertain time-delay systems with input delay. And the logarithmic quantizer were added in the system of the feedback channel and the feedforward channel, using Lyapunov-Krasovskii functional method, delay dependent stability criterion, this system has been. A stability condition is based on two linear matrix inequalities (LMIs) are presented. The design of quantized feedback controller such that the asymptotic stability of the system, and points out that the quantizer quantization density directly affects the control performance of the system. Finally, numerical simulation results verify the effectiveness of this method.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 游科友;謝立華;;網(wǎng)絡(luò)控制系統(tǒng)的最新研究綜述[J];自動(dòng)化學(xué)報(bào);2013年02期
2 馬永光;陳文穎;王兵樹;葛偉;;有時(shí)延和丟包的網(wǎng)絡(luò)控制系統(tǒng)的補(bǔ)償策略[J];計(jì)算機(jī)工程與應(yīng)用;2010年14期
3 麻毓鏹;蔡逢煌;王武;李玉榕;;隨機(jī)通訊時(shí)延網(wǎng)絡(luò)化切換系統(tǒng)H_∞靜態(tài)輸出反饋控制[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
4 杜鋒;錢清泉;;基于改進(jìn)Smith預(yù)估補(bǔ)償?shù)木W(wǎng)絡(luò)控制系統(tǒng)研究[J];系統(tǒng)工程與電子技術(shù);2009年03期
5 聶雪媛;王恒;;網(wǎng)絡(luò)控制系統(tǒng)補(bǔ)償器設(shè)計(jì)及穩(wěn)定性分析[J];控制理論與應(yīng)用;2008年02期
6 朱其新,吳建國(guó),陸國(guó)平,堵俊,周暉,姜平;網(wǎng)絡(luò)控制系統(tǒng)中的基本問題與時(shí)延分析[J];南通工學(xué)院學(xué)報(bào)(自然科學(xué)版);2003年03期
7 王飛躍,王成紅;基于網(wǎng)絡(luò)控制的若干基本問題的思考和分析[J];自動(dòng)化學(xué)報(bào);2002年S1期
,本文編號(hào):1418502
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1418502.html