基于激子—等離子體激元共振能量轉(zhuǎn)移的有機(jī)光電化學(xué)晶體管生物傳感器
發(fā)布時(shí)間:2018-01-09 04:22
本文關(guān)鍵詞:基于激子—等離子體激元共振能量轉(zhuǎn)移的有機(jī)光電化學(xué)晶體管生物傳感器 出處:《深圳大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 有機(jī)光電化學(xué)晶體管 光電化學(xué) 共振能量轉(zhuǎn)移 DNA傳感 免疫傳感
【摘要】:近年來(lái),有機(jī)電化學(xué)晶體管(OECT)已被廣泛應(yīng)用于生物傳感領(lǐng)域,其具有成本低、容易制備、工作電壓低(1 V)、生物兼容性好、易微型化、可制成柔性器件等諸多優(yōu)點(diǎn)。由于OECT結(jié)合了傳統(tǒng)電化學(xué)檢測(cè)的優(yōu)點(diǎn),并且同時(shí)具有傳感和信號(hào)放大的功能,在生物分子檢測(cè)中具有非常高的靈敏度。另一方面,光電化學(xué)(PEC)生物傳感技術(shù)在分析化學(xué)領(lǐng)域正受到越來(lái)越廣泛的關(guān)注。PEC生物傳感是在傳統(tǒng)電化學(xué)檢測(cè)技術(shù)基礎(chǔ)上發(fā)展出來(lái)的一種生物傳感技術(shù),由于結(jié)合了光激發(fā)信號(hào)與電檢測(cè)信號(hào)兩個(gè)技術(shù),很大程度的消除了背景信號(hào),使得PEC生物傳感檢測(cè)的靈敏度很高。由于這兩種傳感技術(shù)優(yōu)勢(shì)互補(bǔ),且從工作原理上有合適的結(jié)合點(diǎn),因此本論文將PEC體系中的工作電極作為OECT體系中的柵電極,構(gòu)建一種基于有機(jī)光電化學(xué)晶體管(OPECT)的新型、具有更高靈敏度的生物傳感技術(shù),并將其應(yīng)用于DNA傳感和免疫傳感(檢測(cè)沙門氏菌)中,實(shí)現(xiàn)對(duì)生物分子的高靈敏、高特異性檢測(cè)。主要圍繞材料與器件的制備、新型傳感技術(shù)的構(gòu)建、OPECT在DNA傳感中的應(yīng)用、OPECT在免疫(沙門氏菌)傳感器中的應(yīng)用等四個(gè)方面展開探討。研究了硫化鎘量子點(diǎn)(CdS QDs)和金納米顆粒(Au NPs)的制備,并利用透射電子顯微鏡、紫外可見光譜儀和熒光光譜儀等對(duì)其性能進(jìn)行表征。結(jié)果表明,兩者的尺寸都約為5±1 nm,粒徑大小均勻,分散性良好。CdS QDs有較寬的紫外吸收峰,適合作為PEC及OPECT生物傳感器的基底材料,并且CdS QDs的熒光發(fā)射峰與Au NPs的紫外吸收峰有很大的重疊,有利于激發(fā)Au NPs的表面等離子體共振(SPR),進(jìn)而在兩種粒子間迅速產(chǎn)生激子-等離子體激元相互作用(EPI)。成功制備了OPECT器件,并對(duì)其電學(xué)性能進(jìn)行了表征。結(jié)果表明,所制備的OPECT器件在0.1 M AA(100 mM PBS配制)溶液中能夠穩(wěn)定工作,并且在0~0.6 V的V_(GS)范圍內(nèi),溝道電流的可調(diào)范圍大于一個(gè)數(shù)量級(jí),有利于開發(fā)高靈敏的生物傳感器。構(gòu)建了基于OPECT的新型傳感技術(shù)并對(duì)其工作原理進(jìn)行探討。包括測(cè)試平臺(tái)的搭建、配套的電解池結(jié)構(gòu)設(shè)計(jì)以及對(duì)相關(guān)的測(cè)試參數(shù)進(jìn)行優(yōu)化,最終搭建的實(shí)驗(yàn)平臺(tái)能夠同時(shí)滿足OPECT及PEC的電信號(hào)檢測(cè)要求。通過(guò)對(duì)OPECT新型傳感技術(shù)工作原理的探索我們發(fā)現(xiàn),當(dāng)在合適的光激發(fā)下,柵電極上的光電活性半導(dǎo)體材料發(fā)生電子躍遷并伴隨電荷轉(zhuǎn)移,產(chǎn)生的光電壓導(dǎo)致柵電極/電解質(zhì)界面電勢(shì)發(fā)生變化,從而引起器件的有效柵電壓發(fā)生變化,最終通過(guò)器件溝道電流的變化反映出來(lái)。研究了OPECT在DNA傳感中的應(yīng)用。結(jié)果表明,基于位阻效應(yīng)的有機(jī)光電化學(xué)晶體管DNA傳感器對(duì)10個(gè)堿基的無(wú)標(biāo)記目標(biāo)DNA的檢測(cè)極限為10 nM,其原理主要是基于目標(biāo)DNA對(duì)柵電極表面電荷轉(zhuǎn)移的阻礙作用。利用Au NPs對(duì)目標(biāo)DNA進(jìn)行標(biāo)記后,傳感器的檢測(cè)極限最低可達(dá)1 fM,比基于位阻效應(yīng)的DNA傳感器的檢測(cè)極限降低了7個(gè)數(shù)量級(jí),這主要?dú)w功于CdS QDs與Au NPs之間的EPI效應(yīng)使得柵電極表面的電荷轉(zhuǎn)移大幅度減弱。此外,通過(guò)研究粒子間距對(duì)EPI效應(yīng)的影響發(fā)現(xiàn),在EPI效應(yīng)檢測(cè)體系中位阻效應(yīng)和EPI效應(yīng)兩者同時(shí)都有貢獻(xiàn)。同時(shí),在相同傳感體系下,我們發(fā)現(xiàn)OPECT體系的檢測(cè)極限比傳統(tǒng)PEC體系低1~2個(gè)數(shù)量級(jí),說(shuō)明OPECT具有更高的檢測(cè)靈敏度。研究了OPECT在免疫(沙門氏菌)傳感中的應(yīng)用。結(jié)果表明,基于位阻效應(yīng)的OPECT沙門氏菌傳感器對(duì)沙門氏菌的檢測(cè)極限為102 cells/mL,其傳感原理主要是基于沙門氏菌對(duì)柵電極表面電荷轉(zhuǎn)移的阻礙作用。此外,通過(guò)Au NPs標(biāo)記沙門氏菌,引入CdS QDs與Au NPs間的EPI效應(yīng),沙門氏菌傳感器的檢測(cè)極限可達(dá)10 cells/m L,相對(duì)于單純基于位阻效應(yīng)的沙門氏菌傳感器檢測(cè)結(jié)果降低了一個(gè)數(shù)量級(jí)。我們相信,該傳感技術(shù)具有非常高的普適性,可拓展到病毒、海洋微生物、細(xì)胞檢測(cè)等諸多領(lǐng)域的研究,具有較好的可持續(xù)科學(xué)研究?jī)r(jià)值。
[Abstract]:In recent years, organic electrochemical transistors (OECT) have been widely used in the field of biosensors, which has the advantages of low cost, easy preparation, low working voltage (1 V), good biocompatibility, easy miniaturization, can be made of flexible devices and many other advantages. The advantages of OECT combined with conventional electrochemical detection, and at the same time with sensing and signal amplification function, has very high sensitivity in the detection of biological molecules. On the other hand, photoelectrochemical (PEC).PEC biosensor biosensor technology in the field of analytical chemistry is more and more widely is a biological sensing technology developed based on traditional electrochemical detection technology, due to the light the excitation signal and electric signal detection technology combined with the two, largely eliminate the background signal, the sensitivity of PEC biosensor detection is very high. Because of these two kinds of complementary sensing technology advantage, and from work The principle has the right combination of points, so the working electrode in the PEC system as a gate electrode in the OECT system, the construction of an organic photoelectric transistor (OPECT) based on the model, biological sensing technology has high sensitivity, and applied to the DNA sensor and the immune sensor (detection of Salmonella in the implementation of biological molecules) with high sensitivity and high specificity. The detection mainly focus on materials and devices for the preparation of the construction of new sensing technology, the application of OPECT in the DNA sensor, OPECT in immune (Salmonella) to discuss the four aspects of the sensor's application. The study of cadmium sulfide quantum dots (CdS QDs) and gold nanoparticles (Au NPs) were prepared using transmission electron microscopy, characterized the UV Vis spectroscopy and fluorescence spectroscopy. The results show that both the size of about 5 + 1 nm, uniform particle size, dispersion Good.CdS QDs has a broad UV absorption peak, suitable as a base material PEC and OPECT biosensors, UV and fluorescence emission peak of CdS QDs and Au NPs absorption peaks have great overlap, is conducive to the surface plasmon resonance excitation of Au NPs (SPR), and then rapidly produce exciton plasmon in the two kinds of interaction between particles (EPI). The OPECT device was successfully prepared, and the electrical properties were studied. The results showed that the prepared OPECT device at 0.1 M AA (100 mM PBS preparation) solution can work steadily, and in the 0~0.6 V V_ (GS) range. The channel current adjustable range is more than an order of magnitude, is conducive to the development of high sensitive biosensor. The construction of new sensing technology of OPECT and its working principle were discussed. Based on including testing platform, supporting structure design and the electrolysis cell to the associated test The experimental parameters were optimized, and ultimately build the platform can satisfy the requirements of the signal detection of OPECT and PEC. Through the exploration of the new OPECT sensor technology working principle we found that when appropriate excitation light, photoelectric active semiconductor material gate electrode on the electronic transition occurs with charge transfer caused by gate photovoltage the electrode / electrolyte interface potential changes, changes in effective gate voltage causing device, finally by changing the channel current of the device reflected. On the application of OPECT in the DNA sensor. The results show that the organic chemical sensor photoelectric transistor DNA steric effect of 10 nucleotides unlabeled target DNA detection limit based on the 10 nM, the main principle is to hinder the target DNA on the gate electrode surface based on charge transfer. To mark the target DNA by using Au NPs, sensor The lowest detection limit was 1 fM, the detection limit of DNA sensor based on the steric effect is reduced by 7 orders of magnitude, which is mainly attributed to the EPI effect between CdS QDs and Au NPs makes the charge transfer gate electrode surface is greatly reduced. In addition, the EPI should be found to affect the effect through the study of particle spacing, in EPI effect testing system of steric effect and EPI effect both contribute. At the same time, in the same sensing system, we found that the OPECT system than the traditional PEC system with low detection limit of 1~2 orders of magnitude, indicating that OPECT has a higher detection sensitivity. The research of OPECT in immune (Salmonella) sensing application the detection limit of OPECT. The results showed that Salmonella sensor steric effect of Salmonella based on 102 cells/mL, the sensing principle is the main obstacle of Salmonella transfer on the gate electrode based on surface charge. In addition, Through the Au NPs marker of Salmonella, the introduction of EPI CdS QDs and Au NPs effect, the detection limit can reach Salmonella sensor 10 cells/m L, compared with the pure Salmonella sensor steric effect detection result is reduced by one order of magnitude based. We believe that this technology has very high universality. That can be extended to the virus, marine microorganisms, cell detection and many other fields, with the value of sustainable scientific research better.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 趙偉偉;馬征遠(yuǎn);徐靜娟;陳洪淵;;光電化學(xué)免疫分析研究進(jìn)展[J];科學(xué)通報(bào);2014年02期
,本文編號(hào):1399981
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1399981.html
最近更新
教材專著