基于優(yōu)化神經(jīng)網(wǎng)絡(luò)和DGA的變壓器故障診斷
本文關(guān)鍵詞:基于優(yōu)化神經(jīng)網(wǎng)絡(luò)和DGA的變壓器故障診斷 出處:《高壓電器》2016年11期 論文類型:期刊論文
更多相關(guān)文章: 高壓變壓器 混沌粒子群算法 BP神經(jīng)網(wǎng)絡(luò) 自適應(yīng)機(jī)制 故障診斷
【摘要】:人工神經(jīng)網(wǎng)絡(luò)技術(shù)已經(jīng)在變壓器的狀態(tài)診斷得到應(yīng)用,為了克服故障分析中BP神經(jīng)網(wǎng)絡(luò)存在的不足,提出了一種自適應(yīng)混沌粒子群優(yōu)化神經(jīng)網(wǎng)絡(luò)在變壓器故障診斷的新方法。該算法通過進(jìn)化速度因子和聚集因子調(diào)整慣性權(quán)重,并改進(jìn)學(xué)習(xí)因子,引入混沌系統(tǒng),構(gòu)成混沌粒子群算法優(yōu)化神經(jīng)網(wǎng)絡(luò)參數(shù),有效地克服常規(guī)BP算法訓(xùn)練收斂速度慢、易陷入局部極小值等缺點(diǎn)。最后基于DGA對變壓器故障實(shí)例分析仿真,對比常規(guī)變壓器診斷方法結(jié)果表明,該算法能夠提高診斷效率以及故障模式識別的準(zhǔn)確性。
[Abstract]:Artificial neural network technology has been applied in transformer condition diagnosis, in order to overcome the shortcomings of BP neural network in fault analysis. A new method of adaptive chaotic particle swarm optimization neural network for transformer fault diagnosis is proposed. The algorithm adjusts inertia weight by evolutionary speed factor and aggregation factor and improves learning factor to introduce chaotic system. Chaotic particle swarm optimization algorithm is used to optimize neural network parameters, which effectively overcomes the shortcomings of conventional BP algorithm, such as slow training convergence speed and easy to fall into local minimum. Finally, the transformer fault analysis and simulation based on DGA is carried out. The results of conventional transformer diagnosis show that the algorithm can improve the efficiency of diagnosis and the accuracy of fault pattern recognition.
【作者單位】: 中國礦業(yè)大學(xué)信息與電氣工程學(xué)院;
【分類號】:TM407;TP183
【正文快照】: 0引言近些年,隨著智能變電站變壓器在線監(jiān)測系統(tǒng)的發(fā)展,人工智能算法在系統(tǒng)狀態(tài)監(jiān)控后臺進(jìn)行變壓器故障診斷中的應(yīng)用日益廣泛,其中BP神經(jīng)網(wǎng)絡(luò)算法的診斷效果尤為理想[1]。其優(yōu)點(diǎn)在于自主學(xué)習(xí)能力強(qiáng),容錯性和魯棒性好,對于復(fù)雜數(shù)據(jù)的處理具有快速尋優(yōu)的能力。BP神經(jīng)網(wǎng)絡(luò)的不足
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡(luò)推定操作者疲勞的研究[J];人類工效學(xué);2004年03期
2 常國任;李仁松;沈醫(yī)文;劉鋼;;基于神經(jīng)網(wǎng)絡(luò)的直升機(jī)艦面系統(tǒng)效能評估[J];艦船電子工程;2007年03期
3 陳俊;;神經(jīng)網(wǎng)絡(luò)的應(yīng)用與展望[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(自然科學(xué)版);2009年05期
4 許萬增;;神經(jīng)網(wǎng)絡(luò)的研究及其應(yīng)用[J];國際技術(shù)經(jīng)濟(jì)研究學(xué)報;1990年01期
5 張軍華;神經(jīng)網(wǎng)絡(luò)技術(shù)及其在軍用系統(tǒng)中的應(yīng)用[J];現(xiàn)代防御技術(shù);1992年04期
6 雷明,李作清,陳志祥,吳雅,楊叔子;神經(jīng)網(wǎng)絡(luò)在預(yù)報控制中的應(yīng)用[J];機(jī)床;1993年11期
7 靳蕃;神經(jīng)網(wǎng)絡(luò)及其在鐵道科技中應(yīng)用的探討[J];鐵道學(xué)報;1993年02期
8 宋玉華,王啟霞;神經(jīng)網(wǎng)絡(luò)診斷──神經(jīng)網(wǎng)絡(luò)在自動化領(lǐng)域里的應(yīng)用[J];中國儀器儀表;1994年03期
9 魏銘炎;國內(nèi)外神經(jīng)網(wǎng)絡(luò)技術(shù)的研究與應(yīng)用概況[J];電機(jī)電器技術(shù);1995年04期
10 王中賢,錢頌迪;神經(jīng)網(wǎng)絡(luò)法在經(jīng)濟(jì)管理中的應(yīng)用[J];航天工業(yè)管理;1995年04期
相關(guān)會議論文 前10條
1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學(xué)術(shù)年會論文集[C];1996年
2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動化會議論文集(上冊)[C];2003年
3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年
4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
5 鐘義信;;知識論:神經(jīng)網(wǎng)絡(luò)的新機(jī)遇——紀(jì)念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
6 許進(jìn);保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學(xué)生創(chuàng)造力評估中的應(yīng)用[A];第十二屆全國心理學(xué)學(xué)術(shù)大會論文摘要集[C];2009年
9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學(xué)學(xué)報(增刊)][C];2009年
10 張廣遠(yuǎn);萬強(qiáng);曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學(xué)術(shù)會議論文集[C];2010年
相關(guān)重要報紙文章 前10條
1 美國明尼蘇達(dá)大學(xué)社會學(xué)博士 密西西比州立大學(xué)國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護(hù)好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報;2014年
2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機(jī)世界;2001年
3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報;2003年
4 中國科技大學(xué)計算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計算機(jī)世界;2003年
5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日報;2007年
6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡(luò)[N];科技日報;2011年
7 健康時報特約記者 張獻(xiàn)懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時報;2006年
8 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達(dá)國際先進(jìn)水平[N];中國電子報;2001年
9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報;2002年
10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國船舶報;2006年
相關(guān)博士學(xué)位論文 前10條
1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學(xué);2004年
2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學(xué);2015年
3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學(xué);2014年
4 王新迎;基于隨機(jī)映射神經(jīng)網(wǎng)絡(luò)的多元時間序列預(yù)測方法研究[D];大連理工大學(xué);2015年
5 付愛民;極速學(xué)習(xí)機(jī)的訓(xùn)練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學(xué);2015年
6 李輝;基于粒計算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學(xué);2015年
7 王衛(wèi)蘋;復(fù)雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學(xué);2015年
8 張海軍;基于云計算的神經(jīng)網(wǎng)絡(luò)并行實(shí)現(xiàn)及其學(xué)習(xí)方法研究[D];華南理工大學(xué);2015年
9 李艷晴;風(fēng)速時間序列預(yù)測算法研究[D];北京科技大學(xué);2016年
10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預(yù)測的研究[D];華南理工大學(xué);2015年
2 賈文靜;基于改進(jìn)型神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電系統(tǒng)預(yù)測及控制研究[D];燕山大學(xué);2015年
3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學(xué);2015年
4 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學(xué);2015年
5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學(xué);2015年
6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學(xué);2015年
7 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預(yù)測研究[D];華南理工大學(xué);2015年
8 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預(yù)測研究與系統(tǒng)實(shí)現(xiàn)[D];華南理工大學(xué);2015年
9 張韜;幾類時滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學(xué);2015年
10 邵雪瑩;幾類時滯不確定神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];渤海大學(xué);2015年
,本文編號:1399535
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1399535.html