天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動化論文 >

動態(tài)搜索空間策略下的粒子群算法改進(jìn)及其拓展研究

發(fā)布時(shí)間:2018-01-04 19:39

  本文關(guān)鍵詞:動態(tài)搜索空間策略下的粒子群算法改進(jìn)及其拓展研究 出處:《江西理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 群體智能 搜索空間 逐層演化 早熟


【摘要】:隨著以粒子群為例的群智能算法在各領(lǐng)域內(nèi)愈發(fā)廣泛的使用,其算法后期早熟以及最終解精度不高等現(xiàn)象成了務(wù)須重視并嘗試解決的問題。本文以粒子群算法為切入點(diǎn),通過觀察粒子在搜索過程中具體空間特性,逐步改進(jìn)并擴(kuò)展優(yōu)化策略,最終構(gòu)建出具有一定廣泛適用性的優(yōu)化策略。具體主要包括以下三方面:(1)為進(jìn)一步研究和優(yōu)化粒子群算法,在采用非線性學(xué)習(xí)因子的同時(shí),提出了一種新的牽引策略來共同優(yōu)化粒子群算法(Particle Swarm Optimization Algorithm based on Homing HMPSO)。該策略通過使粒子發(fā)生偏移于最優(yōu)解的位移,增加粒子活性,從而提升算法后期的尋優(yōu)能力。依實(shí)驗(yàn)需求將各基準(zhǔn)函數(shù)進(jìn)行調(diào)整變換并通過仿真實(shí)驗(yàn)進(jìn)行尋優(yōu)測試。結(jié)果表明,在算法后期的尋優(yōu)能力有明顯提升,且具有較好的魯棒性。最后,估算出算法尋優(yōu)結(jié)果精度高于指定閥值精度的概率區(qū)間,證明該策略具有良好可信度。(2)為進(jìn)一步緩解粒子群優(yōu)化算法在其后期收斂速度慢、早熟等問題,提出了一種掛載式的、依賴自適應(yīng)閥值和已知全局最優(yōu)解的壓縮搜索空間策略。并在此基礎(chǔ)上對粒子重新分配初始位置、調(diào)整速度權(quán)值來提升算法的后期探索能力。實(shí)驗(yàn)表明,在使用相同的權(quán)重和學(xué)習(xí)因子策略時(shí),比之原粒子群優(yōu)化算法具有較好的表現(xiàn),在對量子粒子群算法進(jìn)行嵌入時(shí)依然具有一定效果。該策略可以有效避免早熟問題,提升算法在后期的尋優(yōu)效果,具有較好的魯棒性。(3)群體智能算法的主要任務(wù)便是在有限的時(shí)間內(nèi)盡可能的獲得精度更高的解。但由于早熟等常見問題,使得一個精度更高的解需要通過提供額外的迭代次數(shù)來取得。為能徹底解決早熟問題的同時(shí)保持原算法主體不變且可與現(xiàn)有優(yōu)化理論協(xié)同優(yōu)化,在前期仿真實(shí)驗(yàn)和理論證明的基礎(chǔ)上提出了一種逐層演化的改進(jìn)策略。利用在原算法中構(gòu)建基于搜索空間壓縮理論的自適應(yīng)系統(tǒng),通過逐層的壓縮、選擇、再初始化的操作,以包括壓縮后搜索空間在內(nèi)的社會信息作為遺傳知識,指導(dǎo)尋優(yōu)過程,從而實(shí)現(xiàn)最終解精度的提升、避免早熟問題的出現(xiàn)。對基準(zhǔn)函數(shù)進(jìn)行仿真實(shí)驗(yàn)可以看出該策略在提升算法精度,增強(qiáng)后期個體活性方面具有良好的表現(xiàn)。上述三個策略,依次證實(shí)了:提升種群多樣性有助于提升粒子群算法最終表現(xiàn);在同等情況下,壓縮搜索空間可以使得算法最終表現(xiàn)得到提升;逐層的演化策略作為在種群多樣性與搜索空間二者的基礎(chǔ)上構(gòu)建的優(yōu)化策略較之于前者具有更好的普適性。
[Abstract]:With particle swarm optimization as an example, swarm intelligence algorithm is more and more widely used in various fields. In this paper, particle swarm optimization (PSO) is taken as the starting point, and the specific spatial characteristics of particles in the search process are observed. Gradually improve and expand the optimization strategy, and finally build an optimization strategy with a wide range of applicability, including the following three aspects: 1) for further research and optimization of particle swarm optimization algorithm. The nonlinear learning factor is used at the same time. A new traction strategy is proposed to optimize particle swarm optimization (PSO). Particle Swarm Optimization Algorithm based on Homing HMPSO). . this strategy shifts the particle to the optimal solution by causing the particle to shift to the optimal solution. Increase particle activity, thus improve the ability of optimization in the later stage of the algorithm. According to the requirements of the experiment, the benchmark functions are adjusted and transformed, and the optimization tests are carried out through simulation experiments. The results show that. In the later stage of the algorithm, the optimization ability is obviously improved, and the algorithm has good robustness. Finally, the probability interval of the accuracy of the algorithm is estimated to be higher than the specified threshold precision. It is proved that the strategy has good reliability.) in order to further alleviate the problems of slow convergence rate and premature convergence of particle swarm optimization algorithm, a mount formula is proposed. The search space strategy depends on adaptive threshold and known global optimal solution. On this basis, the initial position of particle is reassigned and the velocity weight is adjusted to improve the ability of the algorithm to explore in the later stage. When using the same weight and learning factor strategy, it has better performance than the original particle swarm optimization algorithm. This strategy can effectively avoid the premature problem and improve the optimization effect of the algorithm in the later stage. The main task of swarm intelligence algorithm is to get more accurate solution in limited time. However, due to the common problems such as precocity and so on. In order to solve the precocious problem completely and keep the main body of the original algorithm unchanged and cooperate with the existing optimization theory, a more accurate solution needs to be obtained by providing additional iterations. On the basis of previous simulation experiments and theoretical proof, an improved strategy of hierarchical evolution is proposed. An adaptive system based on search space compression theory is constructed in the original algorithm. Reinitialize the operation, including the compressed search space, including social information as genetic knowledge, to guide the optimization process, so as to achieve the final solution accuracy. To avoid the problem of precocity. The simulation of benchmark function shows that the strategy has a good performance in improving the algorithm accuracy and enhancing the individual activity in the later stage. The three strategies mentioned above. It is proved in turn that improving the diversity of population is helpful to the final performance of PSO. In the same situation, the algorithm can be improved by compressing the search space. As an optimization strategy based on population diversity and search space, the evolutionary strategy of layer by layer has better universality than the former.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡旺;李志蜀;;一種更簡化而高效的粒子群優(yōu)化算法[J];軟件學(xué)報(bào);2007年04期

2 陳貴敏;賈建援;韓琪;;粒子群優(yōu)化算法的慣性權(quán)值遞減策略研究[J];西安交通大學(xué)學(xué)報(bào);2006年01期

3 陳炳瑞,馮夏庭;壓縮搜索空間與速度范圍粒子群優(yōu)化算法[J];東北大學(xué)學(xué)報(bào);2005年05期

4 李士勇;李盼池;;求解連續(xù)空間優(yōu)化問題的量子粒子群算法[J];量子電子學(xué)報(bào);2007年05期

5 倪慶劍;張志政;王蓁蓁;邢漢承;;一種基于可變多簇結(jié)構(gòu)的動態(tài)概率粒子群優(yōu)化算法[J];軟件學(xué)報(bào);2009年02期

6 段其昌;張紅雷;;基于搜索空間可調(diào)的自適應(yīng)粒子群優(yōu)化算法與仿真[J];控制與決策;2008年10期

7 陳立華;蔡德所;梅亞東;;動態(tài)速度限制粒子群算法及其應(yīng)用[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期

8 秦洪德;石麗麗;;一種新型的被動啟發(fā)式粒子群優(yōu)化算法[J];哈爾濱工程大學(xué)學(xué)報(bào);2010年10期

9 王剛;張定華;陳冰;;基于分工合作和搜索空間重構(gòu)的粒子群優(yōu)化[J];計(jì)算機(jī)工程與應(yīng)用;2010年02期

10 毛開富;包廣清;徐馳;;基于非對稱學(xué)習(xí)因子調(diào)節(jié)的粒子群優(yōu)化算法[J];計(jì)算機(jī)工程;2010年19期

,

本文編號:1379841

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1379841.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶93301***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产午夜福利片在线观看| 福利视频一区二区三区| 日韩成人h视频在线观看| 午夜精品一区二区av| 国产乱淫av一区二区三区| 欧美乱码精品一区二区三| 日本精品视频一二三区| 亚洲一区二区三区四区| 国产美女网红精品演绎| 国产中文字幕一二三区| 精品少妇人妻av一区二区蜜桃| 欧美日韩综合综合久久久| 国产欧美一区二区另类精品| 国产精品午夜视频免费观看| 久久精品蜜桃一区二区av| 五月的丁香婷婷综合网| 亚洲第一视频少妇人妻系列| 亚洲综合伊人五月天中文| 色偷偷偷拍视频在线观看| 1024你懂的在线视频| 国产又粗又猛又长又黄视频| 国产精品一区欧美二区| 好吊妞在线免费观看视频| 欧洲精品一区二区三区四区| 五月激情综合在线视频| 91欧美日韩国产在线观看| 又黄又爽禁片视频在线观看| 韩国激情野战视频在线播放| 国产欧美高清精品一区| 精品欧美国产一二三区| 久久精品国产亚洲av久按摩| 色婷婷丁香激情五月天| 欧美日韩国产午夜福利| 成人国产一区二区三区精品麻豆| 欧美整片精品日韩综合| 在线日韩欧美国产自拍| 欧美日韩成人在线一区| 欧美成人国产精品高清| 欧美欧美日韩综合一区| 中文字幕有码视频熟女| 欧美一级片日韩一级片|