基于改進(jìn)遺傳算法的磁靶向聚焦線(xiàn)圈陣列優(yōu)化設(shè)計(jì)
[Abstract]:The targeted therapy of magnetic drug-loaded granules is a new method which has attracted wide attention in recent years. Because of its non-invasive and high-targeting characteristics, it has wide application and potential huge market demand. The characteristic of external magnetic field is the key factor of therapeutic effect. Compared with the traditional way of producing external magnetic field by permanent magnet, the application of coil array to form external magnetic field has the advantages of flexibility, simplicity, maneuverability and so on. The target position can be changed according to the arrangement of the coil array and the different excitation of the current applied. Magnetic field intensity and focus range. A magnetic target focusing coil array based on improved genetic algorithm is designed and its focusing performance is optimized. Based on the finite element theory of electromagnetic field and three dimensional electromagnetic field, the structure and parameters of single coil model are designed. On this basis, three kinds of multi-coil arrays are proposed. Compared with the focusing effect and the feasibility of practical application, the planar coil array is selected as the best. Then the basic principle and basic theory of genetic algorithm are studied and improved. The improved genetic algorithm is applied to solve the current combinations of subcoils in the coil array. The focusing performance is verified by simulation calculation, space electric field measurement and physical experiment. The main research work includes: 1 designing single coil parameters and structure with better focusing performance. On the basis of deeply studying and mastering the basic theory of electromagnetic field and three-dimensional finite element analysis method, the influences of turn number, inner diameter and winding mode on the magnetic induction intensity distribution of single coil magnetic field are analyzed, respectively for the axial direction of the coil under different parameters. Based on the analysis of radial magnetic induction distribution, a single coil parameter design scheme with high magnetic induction intensity, high focusing depth at target position and good focusing performance is selected. Finally, the turn number n ~ (6) and the inner diameter (D ~ (2) cm) are determined. The single coil scheme of multi-layer winding method is the best. 2 A multi-coil array scheme with better focusing performance is designed. Based on the selected single coil parameters, three kinds of multi-coil arrays, hemispherical, planar and annular, are designed. The focusing performance of the three kinds of coil arrays under the same excitation is compared and analyzed, and the feasibility of practical application is combined with the simulation calculation. Finally, the planar coil array is selected as the optimal scheme, and the noncentral and multi-point focusing of the multi-layer planar coil array is realized. 3 the improved genetic algorithm is applied to solve the coil array current combination. The basic principle, concept and solution flow of the standard genetic algorithm are studied and analyzed. On this basis, the optimization and improvement of the algorithm are derived from the initial population, gene loss detection and repair strategy, adaptive crossover and mutation operators. The best individual protection is carried out. Through four groups of test functions, the performance of the comprehensive test and evaluation. Based on the improved genetic algorithm, the current combination of coil array subcoils is solved, and the current combination with high magnetic induction intensity, high gradient, good focusing performance and high energy efficiency is obtained. The coil array model was built, and the magnetic induction intensity distribution of the target position was measured by using the space magnetic field measurement platform. The results verified its focusing performance, and the physical experiment was carried out to observe the focusing effect.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TH789
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊艷麗,史維祥;一種新的優(yōu)化算法—遺傳算法的設(shè)計(jì)[J];液壓氣動(dòng)與密封;2001年02期
2 王毅,曹樹(shù)良;遺傳算法在并聯(lián)水泵系統(tǒng)運(yùn)行優(yōu)化中的應(yīng)用[J];流體機(jī)械;2003年10期
3 趙義紅,李正文,何其四;生物信息處理系統(tǒng)遺傳算法探討[J];成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
4 李凡,黃數(shù)林,張東風(fēng);一種改進(jìn)的多倍體遺傳算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
5 韋雪潔;黎明;劉高航;田貴超;;注入式的遺傳算法的分析與研究[J];南昌航空工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年01期
6 閻綱;;遺傳算法及其仿真[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年04期
7 ;遺傳算法[J];電網(wǎng)與清潔能源;2008年10期
8 吳玫;陸金桂;;遺傳算法的研究進(jìn)展綜述[J];機(jī)床與液壓;2008年03期
9 李培植;肖利明;于靜濤;;基于遺傳算法的結(jié)構(gòu)優(yōu)化方法[J];公路交通科技(應(yīng)用技術(shù)版);2008年08期
10 于金;金樂(lè);杜海璐;;基于改進(jìn)遺傳算法的集裝箱裝載優(yōu)化問(wèn)題研究[J];船海工程;2008年05期
相關(guān)會(huì)議論文 前10條
1 陳家照;廖海濤;張中位;羅寅生;;一種改進(jìn)的遺傳算法及其在路徑規(guī)劃中的應(yīng)用[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年
2 李國(guó)云;劉穎;薛梅;鄔志敏;;遺傳算法在高溫空冷冷凝器優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第五屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2008年
3 王志軍;李守春;張爽;;改進(jìn)的遺傳算法在反演問(wèn)題中的應(yīng)用[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
4 任燕翔;姜立;劉連民;從滋慶;;改進(jìn)遺傳算法在三維日照方案優(yōu)化中的應(yīng)用[A];工程三維模型與虛擬現(xiàn)實(shí)表現(xiàn)——第二屆工程建設(shè)計(jì)算機(jī)應(yīng)用創(chuàng)新論壇論文集[C];2009年
5 韓娟;;遺傳算法概述[A];第三屆河南省汽車(chē)工程科技學(xué)術(shù)研討會(huì)論文集[C];2006年
6 龐國(guó)仲;王元西;;基于遺傳算法控制步長(zhǎng)的定性仿真方法[A];'2000系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2000年
7 張忠華;楊淑瑩;;基于遺傳算法的聚類(lèi)設(shè)計(jì)[A];全國(guó)第二屆信號(hào)處理與應(yīng)用學(xué)術(shù)會(huì)議專(zhuān)刊[C];2008年
8 何翠紅;區(qū)益善;;遺傳算法及其在計(jì)算機(jī)編程中的應(yīng)用[A];1995年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議暨智能自動(dòng)化專(zhuān)業(yè)委員會(huì)成立大會(huì)論文集(下冊(cè))[C];1995年
9 靳開(kāi)巖;張乃堯;;幾種實(shí)用遺傳算法及其比較[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
10 王宏剛;曾建潮;李志宏;;攝動(dòng)遺傳算法[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
相關(guān)重要報(bào)紙文章 前1條
1 林京;《神經(jīng)網(wǎng)絡(luò)和遺傳算法在水科學(xué)領(lǐng)域的應(yīng)用》將面市[N];中國(guó)水利報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 蔡美菊;交互式遺傳算法及其在隱性目標(biāo)決策問(wèn)題中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2015年
2 張士偉;三維聲學(xué)快速多極基本解法在機(jī)械噪聲預(yù)測(cè)中的應(yīng)用研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
3 周輝仁;遞階遺傳算法理論及其應(yīng)用研究[D];天津大學(xué);2008年
4 郝國(guó)生;交互式遺傳算法中用戶(hù)的認(rèn)知規(guī)律及其應(yīng)用[D];中國(guó)礦業(yè)大學(xué);2009年
5 侯格賢;遺傳算法及其在跟蹤系統(tǒng)中的應(yīng)用研究[D];西安電子科技大學(xué);1998年
6 馬國(guó)田;遺傳算法及其在電磁工程中的應(yīng)用[D];西安電子科技大學(xué);1998年
7 唐文艷;結(jié)構(gòu)優(yōu)化中的遺傳算法研究和應(yīng)用[D];大連理工大學(xué);2002年
8 周激流;遺傳算法理論及其在水問(wèn)題中應(yīng)用的研究[D];四川大學(xué);2000年
9 劉冀成;基于改進(jìn)遺傳算法的生物電磁成像與磁場(chǎng)聚焦應(yīng)用研究[D];四川大學(xué);2005年
10 袁麗華;基于物種進(jìn)化的遺傳算法研究[D];南京航空航天大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張英俐;基于遺傳算法的作曲系統(tǒng)研究[D];山東師范大學(xué);2006年
2 鐘海萍;原對(duì)偶遺傳算法與蟻群算法的一種融合算法[D];暨南大學(xué);2013年
3 李志添;模糊遺傳算法與資源優(yōu)化配置的預(yù)測(cè)控制[D];華南理工大學(xué);2015年
4 王琳琳;新型雙層液壓轎運(yùn)車(chē)車(chē)廂的設(shè)計(jì)研究[D];上海工程技術(shù)大學(xué);2015年
5 李海全;基于遺傳算法的建筑體形系數(shù)及迎風(fēng)面積比優(yōu)化方法研究[D];華南理工大學(xué);2015年
6 彭騫;基于遺傳算法的山區(qū)高等級(jí)公路縱斷面智能優(yōu)化方法研究[D];昆明理工大學(xué);2015年
7 周玉林;基于小波分析和遺傳算法的配電網(wǎng)故障檢測(cè)[D];昆明理工大學(xué);2015年
8 郭頌;基于粗糙集和遺傳算法的數(shù)字管道生產(chǎn)管理系統(tǒng)研究[D];昆明理工大學(xué);2015年
9 吳南;數(shù)值逼近遺傳算法的研究應(yīng)用[D];華南理工大學(xué);2015年
10 于光帥;一類(lèi)優(yōu)化算法的改進(jìn)研究與應(yīng)用[D];渤海大學(xué);2015年
,本文編號(hào):2309117
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/2309117.html