天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 儀器儀表論文 >

壓電疊堆驅(qū)動的微操作器系統(tǒng)建模及控制技術(shù)研究

發(fā)布時間:2018-11-01 10:48
【摘要】:由于人類社會和科學(xué)技術(shù)中研究對象的不斷微細(xì)化,微納操控技術(shù)廣泛應(yīng)用于微操作、微裝配與微機(jī)電技術(shù)領(lǐng)域中。作為連接微觀系統(tǒng)與宏觀系統(tǒng)的核心部件,由壓電疊堆微夾持器與微動平臺構(gòu)成的多自由度微操作器在微納操作任務(wù)中具有極其重要的作用。然而,隨著微操作器不斷向多尺度、柔性化、小型化、高精度和易于控制方向發(fā)展,現(xiàn)有的微操作器及控制技術(shù)面臨眾多挑戰(zhàn):1)被操作物體的跨尺度和不規(guī)則特征要求微夾持器同時具有行程大、分辨率高、平動夾持、集成傳感器和易于控制等優(yōu)點(diǎn),而微動平臺則需要具有行程大、精度高、自由度多和輸出位移解耦等特點(diǎn)。2)壓電疊堆致動器的輸出位移具有嚴(yán)重的非線性遲滯回環(huán),需要有效補(bǔ)償遲滯效應(yīng)并精密控制微動平臺的輸出位移、微夾持器的輸出位移與夾持力。3)對于特定微操作任務(wù),需要將柔順微夾持器固定在宏動平臺上組成宏微夾持系統(tǒng),以實現(xiàn)操作系統(tǒng)大范圍和高精度運(yùn)動的雙重需求。如何有效地探究宏微夾持系統(tǒng)的動力學(xué)特性并抑制大范圍宏動激起的柔順微夾持器振動(偏移)一直是亟待解決的難題。針對以上問題,本文設(shè)計了由雙驅(qū)動壓電疊堆微夾持器和XY微動平臺組成的多自由度微操作器以及包含柔順壓電微夾持器和單自由度宏動平臺的宏微夾持系統(tǒng),重點(diǎn)開展機(jī)構(gòu)靜力學(xué)與動力學(xué)建模、壓電疊堆致動器遲滯非線性建模、精密軌跡跟蹤控制、宏微夾持系統(tǒng)整體動力學(xué)建模以及軌跡規(guī)劃等方面的研究。通過數(shù)值仿真與實驗驗證相結(jié)合,驗證了所建模型與提出方法的可行性。論文研究內(nèi)容分為七章:第一章敘述了論文研究背景及現(xiàn)狀。從壓電疊堆微操作器系統(tǒng)結(jié)構(gòu)、機(jī)構(gòu)靜力學(xué)與動力學(xué)建模、遲滯非線性建模理論、微納精密定位控制技術(shù)以及大范圍宏運(yùn)動下柔順機(jī)構(gòu)的振動控制等方面對壓電微操作器系統(tǒng)中的關(guān)鍵技術(shù)進(jìn)行闡述。第二章設(shè)計了由雙驅(qū)動壓電疊堆微夾持器和XY微動平臺構(gòu)成的多自由度微操作器。采用直圓柔性鉸鏈設(shè)計包含橋式放大機(jī)構(gòu)與平行四邊形機(jī)構(gòu)、壓電疊堆致動器和位置/夾持力應(yīng)變傳感器的雙驅(qū)動壓電疊堆微夾持器。采用混合直圓-葉型柔性鉸鏈設(shè)計包含雙搖桿機(jī)構(gòu)與平行四邊形機(jī)構(gòu)、壓電疊堆致動器和激光傳感器的XY微動平臺。然后使用偽剛體方法建立機(jī)構(gòu)靜力學(xué)與動力學(xué)模型,并通過有限元分析驗證系統(tǒng)模型。最后搭建實驗系統(tǒng),分析測試了微夾持器和微動平臺的開環(huán)特性。第三章提出微夾持器位置/夾持力同步控制策略。在第二章設(shè)計的雙驅(qū)動壓電疊堆微夾持器基礎(chǔ)上,對微夾持器機(jī)構(gòu)進(jìn)行分解,將原來的"單輸入-雙輸出"控制問題變?yōu)?雙輸入-雙輸出"問題,即在采用非線性模糊控制器(NFL)精密跟蹤微夾持器左夾持臂輸出位移軌跡的同時,使用PI控制器同步調(diào)整微夾持器右夾持臂夾持力,從而實現(xiàn)對微夾持器位置/夾持力軌跡的同步控制。為驗證位置/夾持力同步控制策略的可行性,進(jìn)行了4組典型軌跡(方波、正弦、變幅值、變頻率)跟蹤控制實驗。第四章針對壓電疊堆致動器的遲滯非線性問題,構(gòu)建了一種精確表征非對稱遲滯特性的Bouc-Wen模型。采用改進(jìn)遺傳算法對非對稱Bouc-Wen遲滯模型參數(shù)進(jìn)行辨識,并開展正弦衰減和任意軌跡的遲滯模型預(yù)測實驗,驗證了非對稱Bouc-Wen遲滯模型和參數(shù)辨識方法的有效性。第五章研究多自由度微操作器的協(xié)同控制問題。在第四章建立的Bouc-Wen遲滯模型基礎(chǔ)上,根據(jù)辨識得到的Bouc-Wen模型參數(shù)設(shè)計基于遲滯逆模型的前饋控制器,并在前饋控制器的基礎(chǔ)上疊加PI控制器構(gòu)成復(fù)合控制器,實現(xiàn)對微動平臺輸出位移的精密控制。然后將壓電疊堆微夾持器固定安裝在微動平臺上,開展多自由度微操作器的協(xié)同控制。即在使用NFL/PI控制器同步、分階段地控制壓電疊堆微夾持器位置/夾持力軌跡的同時,使用復(fù)合控制器對壓電疊堆微動平臺的輸出位移軌跡進(jìn)行精密跟蹤控制,實驗結(jié)果驗證了協(xié)同控制策略的可行性和有效性。第六章開展了宏微夾持系統(tǒng)動力學(xué)建模及軌跡規(guī)劃研究。將第二章設(shè)計的柔順微夾持器固定安裝于伺服電機(jī)驅(qū)動的單自由度宏動平臺上,構(gòu)成具有大范圍和高精度運(yùn)動的宏微夾持系統(tǒng)。結(jié)合使用偽剛體模型、假設(shè)模態(tài)法和Lagrange方程建立了宏微夾持系統(tǒng)的整體動力學(xué)模型,并通過規(guī)劃宏運(yùn)動軌跡初步減小大范圍宏運(yùn)動激起的柔順微夾持器末端夾持臂的振動(偏移)。為驗證動力學(xué)模型和軌跡規(guī)劃策略的有效性,搭建了宏微夾持實驗系統(tǒng),并開展不同宏運(yùn)動軌跡測試實驗。實驗結(jié)果驗證了動力學(xué)模型和軌跡規(guī)劃策略的正確性及有效性。第七章對全文工作進(jìn)行了歸納總結(jié),并對壓電疊堆驅(qū)動的微納操作技術(shù)進(jìn)行了展望。
[Abstract]:Because of the continuous micro-refinement of research objects in human society and science and technology, the micro-nano manipulation technology is widely used in the field of micro-electromechanical technology, micro-assembly and micro-electro-mechanical technology. As the core part of the micro-system and macro-system, the multi-degree-of-freedom manipulator composed of piezoelectric stack micro-gripper and micro-motion platform plays an extremely important role in the micro-operation task. however, with that development of multi-scale, flexible, miniaturized, high-precision and easy-to-control directions, the existing dynamometer and control technology face many challenges: 1) the cross-scale and irregular characteristics of the object to be operated require the micro-gripper to have a large stroke at the same time, the invention has the advantages of high resolution, translational clamping, integrated sensor and easy control and the like, and the micro platform needs to have the characteristics of large stroke, high precision, multi-degree of freedom and decoupling of output displacement and the like. it needs to effectively compensate the hysteresis effect and precisely control the output displacement of the micro-motion platform, so as to realize the dual requirement of large-range and high-precision movement of the operating system. How to effectively explore the dynamic characteristics of the macro-micro-clamping system and restrain the vibration (offset) of the compliant micro-gripper excited by the large-range macro-motion has always been a difficult problem to be solved. In view of the above problems, this paper designs a multi-degree-of-freedom actuator composed of double-drive piezoelectric stack micro-gripper and XY micro-motion platform, and macro-micro-clamping system including compliant piezoelectric micro-gripper and single-degree-of-freedom macro-dynamic platform, focusing on mechanism statics and dynamics modeling. The study of hysteresis non-linear modeling, precise trajectory tracking control, macro-micro-clamping system integral dynamics modeling and trajectory planning are studied in this paper. Through the combination of numerical simulation and experimental verification, the feasibility of the proposed model and the proposed method is verified. The research contents of the thesis are divided into seven chapters: Chapter one describes the background and present situation of the thesis. The key technologies in the piezoelectric actuator system are discussed from the aspects of the system structure of the piezoelectric stack, the static and dynamic modeling of the mechanism, the hysteresis nonlinear modeling theory, the micro-nano precise positioning control technology and the vibration control of the compliant mechanism under the large-range macro-motion. The second chapter designs a multi-degree-of-freedom actuator composed of double-drive piezoelectric stack micro-gripper and XY micro-motion platform. A double-drive piezoelectric stack microgripper comprising a bridge amplifying mechanism and a parallelogram mechanism, a piezoelectric stack actuator and a position/ clamping force strain sensor is designed by adopting a straight round flexible hinge. The XY fretting platform with double rocker mechanism and parallelogram mechanism, piezoelectric stack actuator and laser sensor is designed by using hybrid straight circle-blade flexible hinge. Then we use the pseudo-rigid body method to establish the static and dynamic model of the mechanism, and validate the system model through the finite element analysis. Finally, an experimental system was built to test the open-loop characteristics of micro-gripper and micro-platform. The third chapter presents the control strategy of the position/ clamping force of the micro gripper. On the basis of the two-drive piezoelectric stack micro gripper designed in the second chapter, the micro gripper mechanism is decomposed and the original Single Input-Dual Output Control issues become Dual Input-Dual Output the problem is that when the displacement track of the left clamping arm of the micro gripper is precisely tracked by adopting a non-linear fuzzy controller (NFL), a PI controller is used for synchronously adjusting the clamping force of the right clamping arm of the micro gripper, thereby realizing the synchronous control of the position/ clamping force track of the micro gripper. In order to verify the feasibility of the position/ clamping force synchronous control strategy, four typical trace (square wave, sine, amplitude and frequency) tracking control experiments were carried out. In the fourth chapter, a Bouc-Wen model for accurately characterizing asymmetric hysteresis is constructed for the hysteresis non-linear problem of piezoelectric stack actuator. An improved genetic algorithm is used to identify the parameters of the asymmetric Bouc-Wein hysteresis model, and a hysteresis model predictive experiment of sinusoidal attenuation and arbitrary trajectory is carried out, and the validity of the asymmetric Bouc-Wen hysteresis model and the parameter identification method is verified. In chapter five, the problem of cooperative control of multi-degree-of-freedom multiplexer is studied. Based on the Bouc-Wen hysteresis model established in the fourth chapter, the feedforward controller based on the hysteresis inverse model is designed according to the obtained Bouc-Wen model parameters, and the PI controller is superposed on the basis of the feedforward controller to form a composite controller, so that the precise control of the displacement of the output displacement of the micro-motion platform is realized. then the piezoelectric stack micro-gripper is fixedly arranged on the micro-motion platform, and the cooperative control of the multi-degree-of-freedom dynamometer is carried out. That is, in synchronization with the NFL/ PI controller, the position/ clamping force track of the piezoelectric stack micro gripper is controlled in stages, and the output displacement track of the piezoelectric stack micro-motion platform is precisely tracked and controlled by using a composite controller, The experimental results verify the feasibility and effectiveness of cooperative control strategy. The sixth chapter carries out the macro-micro-clamping system dynamics modeling and trajectory planning research. A flexible micro gripper designed in the second chapter is fixed on a single-degree-of-freedom macro-motion platform driven by a servo motor to form a macro-micro-clamping system with large range and high-precision movement. By using the pseudo-rigid body model, the integral dynamic model of the macro-micro-clamping system is set up by the mode method and Lagrange equation, and the vibration (offset) of the end clamping arm of the compliant micro gripper excited by the large-range macro-motion is initially reduced by planning the macro-motion trajectory. In order to validate the effectiveness of the dynamic model and trajectory planning strategy, a macro-micro-clamping experimental system was constructed and different macro-motion trajectory test experiments were carried out. The experimental results verify the correctness and effectiveness of the dynamic model and trajectory planning strategy. Chapter 7 summarizes the full-text work and looks forward to the micro-nano-operation technology driven by piezoelectric stack.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TH703

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 紀(jì)華偉;楊世錫;吳昭同;嚴(yán)拱標(biāo);;一種無耦合位移和低集中應(yīng)力的二維微操作器研究[J];儀器儀表學(xué)報;2006年11期

2 紀(jì)華偉;楊世錫;吳昭同;;一體化微操作器誤差分析與建模[J];農(nóng)業(yè)機(jī)械學(xué)報;2007年03期

3 王鵬飛;郭偉;孫立寧;;球基微操作器黏滑摩擦過程建模與分析[J];中國機(jī)械工程;2011年15期

4 榮偉彬,曲東升,孫立寧,祝宇虹,樓超飛;集成式微操作器的研制[J];機(jī)器人;2003年03期

5 吳建華,褚家如;一種壓電驅(qū)動微操作器及其釋放位置精度分析[J];光學(xué)精密工程;2005年03期

6 郭偉;汪盛;李滿天;孫立寧;;基于粘滑驅(qū)動的球基微操作器動力學(xué)建模與分析[J];機(jī)械工程學(xué)報;2007年04期

7 王鵬飛;李滿天;孫立寧;;基于黏滑驅(qū)動的球基微操作器的頻響分析[J];高技術(shù)通訊;2010年06期

8 榮偉彬;曲東升;祝宇虹;孫立寧;蔡鶴皋;;集成式微操作器控制系統(tǒng)的研制[J];電氣自動化;2003年02期

9 劉勁松,吳威,,蔡鶴皋;一種基于力傳感器機(jī)器人裝配作業(yè)的研究[J];哈爾濱工業(yè)大學(xué)學(xué)報;1995年02期

10 張陽;周成剛;葉錫標(biāo);黃文浩;;碳纖維兩臂微鑷的研究分析[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2007年07期

相關(guān)會議論文 前1條

1 嵇國金;馬奎;王磊;;3-DOF并聯(lián)微操作器運(yùn)動學(xué)分析[A];制造業(yè)與未來中國——2002年中國機(jī)械工程學(xué)會年會論文集[C];2002年

相關(guān)博士學(xué)位論文 前2條

1 楊依領(lǐng);壓電疊堆驅(qū)動的微操作器系統(tǒng)建模及控制技術(shù)研究[D];浙江大學(xué);2016年

2 吳建華;高效率的微器件自動裝配技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2007年

相關(guān)碩士學(xué)位論文 前4條

1 李德選;面向微細(xì)作業(yè)的微操作器的關(guān)鍵技術(shù)研究[D];東南大學(xué);2006年

2 趙曉偉;大范圍運(yùn)動下宏/微操作器的動力學(xué)建模與軌跡規(guī)劃研究[D];浙江大學(xué);2016年

3 汪盛;基于粘滑原理的摩擦力驅(qū)動機(jī)理研究與建模[D];哈爾濱工業(yè)大學(xué);2006年

4 萬信亮;基于電熱效應(yīng)的新型五自由度微操作器的研究[D];哈爾濱工程大學(xué);2008年



本文編號:2303684

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/2303684.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e8e71***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com