基于LM_BP神經(jīng)網(wǎng)絡(luò)模型的MEMS加速度計(jì)溫度補(bǔ)償方法研究
發(fā)布時(shí)間:2018-04-19 21:45
本文選題:扭擺式硅微加速度計(jì) + 神經(jīng)網(wǎng)絡(luò); 參考:《儀表技術(shù)與傳感器》2015年11期
【摘要】:隨著MEMS加速度計(jì)應(yīng)用領(lǐng)域的不斷廣泛,其溫度性能越來(lái)越受到重視。在研究扭擺式硅微加速度計(jì)結(jié)構(gòu)與溫度特性的基礎(chǔ)上,采用改進(jìn)LM_BP神經(jīng)網(wǎng)絡(luò)來(lái)構(gòu)建MEMS加速度計(jì)的補(bǔ)償模型,通過(guò)實(shí)時(shí)溫度變化優(yōu)化出溫度補(bǔ)償模型參數(shù),進(jìn)而實(shí)現(xiàn)實(shí)時(shí)溫度補(bǔ)償。實(shí)驗(yàn)結(jié)果表明,通過(guò)該方法補(bǔ)償后的標(biāo)度因數(shù)溫度系數(shù)和全溫零偏穩(wěn)定性分別由252 ppm/℃和16.62 mg/h減小為100 ppm/℃和2.30 mg/h,證明了該溫度補(bǔ)償方法的有效性和可行性。
[Abstract]:With the wide application of MEMS accelerometer, more and more attention has been paid to its temperature performance. Based on the study of the structure and temperature characteristics of the torsion pendulum silicon microaccelerometer, an improved LM_BP neural network is used to construct the compensation model of the MEMS accelerometer, and the parameters of the temperature compensation model are optimized by real-time temperature variation. Furthermore, real-time temperature compensation is realized. The experimental results show that the scaling factor temperature coefficient and the total temperature zero bias stability are reduced from 252 ppm/ 鈩,
本文編號(hào):1774850
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/1774850.html
最近更新
教材專著