基于銣原子鐘的電磁法儀器同步裝置的設(shè)計(jì)
發(fā)布時(shí)間:2018-03-21 18:33
本文選題:同步裝置 切入點(diǎn):同步測(cè)量與控制 出處:《吉林大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著社會(huì)的發(fā)展,電磁法儀器的更新?lián)Q代越來(lái)越頻繁,對(duì)電磁法儀器同步裝置的應(yīng)用也提出了新的要求。電磁法儀器從過(guò)去在地表測(cè)量,到如今在礦井,隧道等地下工程中開(kāi)展工作,測(cè)量環(huán)境日趨復(fù)雜。同步方法的改進(jìn)成為電磁法儀器提升工作效率和提高采集數(shù)據(jù)穩(wěn)定性的關(guān)鍵。如何提高電磁法儀器的時(shí)鐘同步精度,并且能夠適應(yīng)惡劣的天氣變化以及復(fù)雜的地形環(huán)境,成為了改進(jìn)電磁法儀器的關(guān)鍵。 通過(guò)查閱國(guó)內(nèi)外關(guān)于電磁法儀器同步裝置的同步方式的資料可知,目前電磁法儀器同步裝置主要的同步方法有:線同步、GPS同步、石英鐘晶體同步等方式,在野外探測(cè)時(shí)均會(huì)產(chǎn)生或多或少的問(wèn)題。 有線同步使用上受地理環(huán)境影響,當(dāng)電磁法儀器系統(tǒng)間工作距離較遠(yuǎn)時(shí),使用極為不便;GPS同步受天氣變化,地理位置等因素的影響較大;石英鐘同步方式的缺點(diǎn)為石英晶體隨著時(shí)間的增加,晶體會(huì)出現(xiàn)老化的問(wèn)題并且需要在恒溫的條件下進(jìn)行測(cè)量,當(dāng)長(zhǎng)時(shí)間探測(cè)時(shí),要進(jìn)行誤差校正,另一個(gè)缺點(diǎn)是開(kāi)機(jī)預(yù)熱時(shí)間較長(zhǎng),影響工作效率。針對(duì)以上幾種同步方式的缺點(diǎn),本文提出了基于銣原子鐘電磁法儀器同步裝置的設(shè)計(jì)原理,并給出了具體的設(shè)計(jì)方案。 電磁法儀器同步裝置可應(yīng)用于收發(fā)分離的電磁法儀器或分布式的接收機(jī)上,具備較高的同步精度,不受地勢(shì)、天氣等環(huán)境的影響,可以有效的提高電磁法儀器的工作效率。解決其他同步方式存在的問(wèn)題,因此,本文提出了基于銣原子鐘電磁法儀器同步裝置的設(shè)計(jì)。 在研究了同步裝置的國(guó)內(nèi)外現(xiàn)狀及發(fā)展趨勢(shì)的基礎(chǔ)上,提出了同步裝置的設(shè)計(jì)方案及性能指標(biāo)。本同步裝置主要分為基準(zhǔn)系統(tǒng)和被校準(zhǔn)系統(tǒng),同步測(cè)量與控制時(shí)用光耦器件隔離,均是由MCU和CPLD架構(gòu)構(gòu)成,除此之外,,基準(zhǔn)系統(tǒng)的外圍電路的設(shè)計(jì)還包括選頻模塊、觸發(fā)復(fù)位模塊、初始信號(hào)的調(diào)整與檢測(cè)模塊。同步裝置為適應(yīng)各種電磁法儀器探測(cè)的需要,設(shè)計(jì)了多頻率同步輸出信號(hào)。 本文對(duì)電磁法儀器同步裝置進(jìn)行測(cè)試與評(píng)估,其中包括同步裝置的性能測(cè)試,可切換的多頻率信號(hào)輸出測(cè)試,電磁法儀器同步裝置的累計(jì)誤差分析。同步裝置受溫度,振動(dòng)的外部影響時(shí)輸出同步信號(hào)的穩(wěn)定性。計(jì)算了同步裝置野外勘探最小校相周期,評(píng)估了同步裝置在理論上最短校相時(shí)間內(nèi)的誤差精度。同步時(shí)鐘精度可以達(dá)到500ns,為保證同步裝置的精度最小校相周期為兩個(gè)小時(shí)。
[Abstract]:With the development of society, the updating of electromagnetic instruments is becoming more and more frequent, and new requirements are put forward for the application of synchronous devices of electromagnetic instruments. In underground engineering such as tunnel, the measuring environment is becoming more and more complicated. The improvement of synchronous method becomes the key to improve the efficiency of electromagnetic instrument and the stability of collecting data, how to improve the precision of clock synchronization of electromagnetic instrument. And it can adapt to severe weather and complex terrain environment, so it becomes the key to improve electromagnetic instrument. By consulting the domestic and foreign data on the synchronous mode of the electromagnetic instrument synchronization device, we can see that the main synchronization methods of the electromagnetic instrument synchronization device at present are: line synchronization GPS synchronization, quartz clock crystal synchronization and so on. There are more or less problems in the field. The use of wire synchronization is affected by geographical environment. When the working distance between electromagnetic instrument systems is long, GPS synchronization is greatly affected by weather changes and geographical location. The disadvantage of quartz clock synchronization is that the quartz crystal will be aged with the increase of time, and it needs to be measured at constant temperature. When the quartz clock is detected for a long time, the error will be corrected. The other drawback is that the preheating time is long and the working efficiency is affected. In view of the shortcomings of the above several synchronization modes, this paper presents the design principle of the instrument synchronization device based on the rubidium atomic clock electromagnetic method, and gives the specific design scheme. The synchronous device of electromagnetic instrument can be used in the transceiver separated electromagnetic instrument or the distributed receiver. It has high synchronization accuracy and is not affected by the environment such as topography, weather and so on. It can effectively improve the working efficiency of electromagnetic instruments and solve the problems of other synchronization methods. Therefore, this paper presents the design of electromagnetic instrument synchronization device based on rubidium atomic clock. On the basis of studying the present situation and development trend of the synchronous device at home and abroad, the design scheme and performance index of the synchronous device are put forward. The synchronization device is mainly divided into reference system and calibrated system. The synchronous measurement and control are separated by optical coupling devices, which are composed of MCU and CPLD architecture. In addition, the peripheral circuits of the reference system include frequency selecting module, trigger reset module, and so on. In order to meet the needs of various electromagnetic instruments, a multi-frequency synchronous output signal is designed. In this paper, the synchronous device of electromagnetic instrument is tested and evaluated, including the performance test of the synchronous device, the output test of the switchable multi-frequency signal, the analysis of the accumulative error of the synchronous device of the electromagnetic instrument, the temperature of the synchronous device, The stability of the output synchronous signal under the external influence of vibration is calculated. The minimum phase correction period of the synchronous device in the field is calculated. The error accuracy of the synchronous device in the shortest phase correction time in theory is evaluated. The synchronization clock accuracy can reach 500 ns and the minimum phase correction period is two hours in order to ensure the accuracy of the synchronization device.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH763.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 常慶生,唐四元,常青;GPS測(cè)量的誤差及精度控制[J];測(cè)繪通報(bào);2000年04期
2 謝世杰,種紹龍,袁銘;論GPS測(cè)量中的多徑誤差[J];測(cè)繪通報(bào);2003年05期
3 謝春勝;系統(tǒng)間實(shí)時(shí)同步問(wèn)題的研究[J];電子對(duì)抗技術(shù);2002年06期
4 郝文輝;張瑜;;GPS測(cè)量中多徑誤差簡(jiǎn)便模型[J];全球定位系統(tǒng);2006年01期
5 劉國(guó)棟;電磁法及電法儀器的新進(jìn)展和應(yīng)用[J];石油地球物理勘探;2004年S1期
6 李瑞濤,賈洪峰,崔少輝;一種通用精確同步源的設(shè)計(jì)與實(shí)現(xiàn)[J];系統(tǒng)工程與電子技術(shù);2005年02期
相關(guān)博士學(xué)位論文 前1條
1 張文秀;CSAMT與IP聯(lián)合探測(cè)分布式接收系統(tǒng)關(guān)鍵技術(shù)研究[D];吉林大學(xué);2012年
本文編號(hào):1645054
本文鏈接:http://sikaile.net/kejilunwen/yiqiyibiao/1645054.html
最近更新
教材專著