基于局部拓?fù)浣Y(jié)構(gòu)的無(wú)線傳感器網(wǎng)絡(luò)定位算法研究
[Abstract]:Wireless sensor network (WSN) involves many technologies such as wireless communication sensor technology distributed information processing embedded technology and microelectronics and so on. It is widely used in the fields of transportation military medical protection and so on. In many applications of wireless sensor networks, determining the location of events is one of the key issues to be solved after monitoring the occurrence of events. Location information not only determines the location of the event, but also has the functions of network management, moving target tracking, auxiliary routing and so on. Therefore, the design of efficient WSN positioning algorithm is an indispensable part of wireless sensor network management. In this paper, the localization algorithm of wireless sensor networks is studied. The main research work is as follows: (1) the localization algorithm of WSN is studied in depth, and the advantages and disadvantages of WSN positioning technology are analyzed and summarized from three aspects: machine learning, ranging and non-ranging, so as to design high precision. Low energy consumption WSN localization algorithm provides a powerful foundation. (2) based on the research of LE-LPCCA-based localization algorithm, the local topology and distributed characteristics are introduced, and a distributed localization algorithm LE-DLPCCA. based on local preservation is proposed. The simulation results show that when the proportion of training samples is 70%, the positioning accuracy can reach 86%, and the energy consumption can be greatly reduced, thus prolonging the whole life cycle of wireless sensor networks. At the same time, the modeling speed is improved by 8 times. (3) the topology of wireless sensor networks is analyzed, the local topology and the information of non-beacon nodes are introduced, and the semi-supervised learning technology is used to study the localization problem of wireless sensor networks. A mobile node location algorithm LP-LapRLS. based on Laplacian mapping is proposed in this paper. This algorithm not only improves the generalization ability of the mapping model, but also has high modeling efficiency in the typical manifold learning algorithm. Experimental results show that LP-LapRLS has higher modeling efficiency and positioning accuracy than similar algorithms, when the ratio of training sets is 60%. The positioning accuracy can reach 84%. (4) on the basis of studying the architecture and protocol stack of wireless sensor network, the WSN positioning simulation platform is designed and implemented by using VC in VS2010 integrated environment. In this platform, the LE-DLPCCA algorithm and the LP-LapRLS algorithm are implemented. Finally, the localization effect of the two localization algorithms based on machine learning is compared and analyzed. The LE-DLPCCA algorithm is more accurate than the LP-LapRLS algorithm, and the location accuracy of the two algorithms is higher than that of the LP-LapRLS algorithm. It has increased by about 2 percentage points. However, in the case of outliers, the LP-LapRLS algorithm is robust, and the modeling efficiency is the highest in the localization algorithm.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212.9;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱素文;曾憲華;胡夢(mèng);;改進(jìn)的局部保持典型相關(guān)分析的無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位方法[J];傳感技術(shù)學(xué)報(bào);2016年10期
2 田萌;王文劍;;高斯核函數(shù)選擇的廣義核極化準(zhǔn)則[J];計(jì)算機(jī)研究與發(fā)展;2015年08期
3 吳凡;彭力;董國(guó)勇;;WSN中基于中位線分割的APIT定位算法[J];小型微型計(jì)算機(jī)系統(tǒng);2015年07期
4 林海;;一種基于核方法的無(wú)線傳感器網(wǎng)絡(luò)定位算法[J];科技創(chuàng)新導(dǎo)報(bào);2014年26期
5 張迎勝;單志龍;;線性回歸在無(wú)線傳感器網(wǎng)絡(luò)定位中的應(yīng)用研究[J];小型微型計(jì)算機(jī)系統(tǒng);2014年07期
6 溫家旺;王敬東;施喬明;王佳偉;;基于RSSI線性回歸分析的無(wú)線傳感器網(wǎng)絡(luò)定位方法[J];指揮控制與仿真;2014年03期
7 汪麒;莊毅;顧晶晶;;周界入侵檢測(cè)中基于WSN的目標(biāo)定位算法[J];計(jì)算機(jī)工程;2013年09期
8 張露;范偉;韓雙霞;楊明霞;;WSN中基于MDS-MAP的分布式定位算法設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)與數(shù)字工程;2013年06期
9 張蒼松;郭軍;崔嬌;尚軍;;基于RSSI的室內(nèi)定位算法優(yōu)化技術(shù)[J];計(jì)算機(jī)工程與應(yīng)用;2015年03期
10 張銳恒;莊毅;趙振宇;王洲;顧晶晶;;基于MCB的傳感網(wǎng)移動(dòng)目標(biāo)定位算法[J];計(jì)算機(jī)科學(xué);2012年08期
相關(guān)博士學(xué)位論文 前3條
1 侯慧娟;基于電磁波天線陣列的變電站局部放電信號(hào)處理及定位方法[D];上海交通大學(xué);2014年
2 張興福;基于流形學(xué)習(xí)的局部降維算法研究[D];哈爾濱工程大學(xué);2012年
3 王成群;基于學(xué)習(xí)算法的無(wú)線傳感器網(wǎng)絡(luò)定位問(wèn)題研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 王靜;多標(biāo)簽數(shù)據(jù)的降維與分類算法研究[D];大連理工大學(xué);2014年
2 張真;一種非測(cè)距的分布式動(dòng)態(tài)多跳定位算法[D];西安電子科技大學(xué);2014年
3 李江雯;無(wú)線傳感器網(wǎng)絡(luò)非測(cè)距定位算法研究[D];重慶大學(xué);2013年
4 葉潤(rùn);ZigBee節(jié)點(diǎn)設(shè)計(jì)與能量均衡分簇調(diào)度算法的研究[D];電子科技大學(xué);2013年
5 韓夢(mèng)飛;基于K-means聚類和數(shù)據(jù)一致性的WSN多邊定位算法[D];吉林大學(xué);2012年
6 曾群芳;基于拓?fù)浣Y(jié)構(gòu)保持的線性降維方法研究及其應(yīng)用[D];華南理工大學(xué);2012年
7 修志鑫;基于數(shù)據(jù)融合的無(wú)線傳感器網(wǎng)絡(luò)監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];上海交通大學(xué);2012年
8 李成嶺;基于RSSI的無(wú)線自組織網(wǎng)絡(luò)室內(nèi)定位算法研究與實(shí)現(xiàn)[D];上海交通大學(xué);2012年
9 鄭燕;無(wú)線傳感器網(wǎng)絡(luò)同心錨信標(biāo)定位算法的研究[D];華中師范大學(xué);2011年
10 孫文文;海上鉆井平臺(tái)模擬試驗(yàn)臺(tái)的設(shè)計(jì)與制造[D];中國(guó)石油大學(xué);2011年
,本文編號(hào):2436902
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2436902.html