基于混沌理論的弱信號檢測方法的研究
[Abstract]:Weak signal detection has been widely used in communication, radar and other fields. Detection of weak signal in strong noise background is an important research hotspot in modern information theory. It also urges people to explore and study new theory and method of weak signal detection. Traditional weak signal detection methods in time domain are often limited by the signal-to-noise ratio (SNR) threshold. In recent years, with the study of chaos theory in nonlinear science, a new way of thinking is provided for solving the problem. The detection method based on chaos theory overcomes the shortcomings of traditional methods and can detect lower signal-to-noise ratio (SNR) signals, which provides a new theory and method for weak signal detection. In this paper, based on the analysis of chaotic dynamical system, the Lyapunov exponent is taken as the criterion of chaos recognition by taking the Duffing map of Holmes type as the research object. The critical threshold of dynamic equation from chaotic state to periodic state is obtained by QR decomposition method. The basic principle and detection method of weak signal detection using chaotic Duffing oscillator are analyzed in detail. The feasibility of the detection algorithm based on the phase locus change to judge whether the signal to be detected contains the target signal or not is verified, and the detection of the signal with unknown frequency is verified. The sliding mode variable structure control method in control theory is used to improve the Holmes type Duffimg system. The simulation results show that the improved chaotic Duffing system can effectively suppress noise and detect the frequency of weak signal by the power spectrum of the system. Based on the support vector machine theory, genetic algorithm and particle swarm optimization algorithm, a one-step prediction model is established for short-term prediction of chaotic signals. The phase space reconstruction parameters and support vector machine model parameters are combined and optimized simultaneously. According to the obtained optimal parameters, the prediction model is established, and the accuracy of the model is verified by chaotic time series. At the same time, the signals mixed with chaotic noise and weak signals are simulated and compared with the other two traditional parameters. The results show that the proposed method is better than the traditional parameter calculation method in detecting performance.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏均忠;劉遠(yuǎn)宏;冷永剛;葛紀(jì)桃;;微弱信號檢測方法的現(xiàn)狀分析[J];噪聲與振動控制;2011年03期
2 李目;何怡剛;周少武;劉祖潤;;一種差分進(jìn)化算法優(yōu)化小波神經(jīng)網(wǎng)絡(luò)及其在弱信號檢測中的應(yīng)用[J];計算機(jī)應(yīng)用與軟件;2010年03期
3 唐耀華;高靜懷;包乾宗;;一種新的選擇性支持向量機(jī)集成學(xué)習(xí)算法[J];西安交通大學(xué)學(xué)報;2008年10期
4 陸振波;蔡志明;姜可宇;厲春生;;基于最小二乘支持向量機(jī)的混沌背景弱信號檢測[J];數(shù)據(jù)采集與處理;2008年05期
5 蔡俊偉;胡壽松;陶洪峰;;基于選擇性支持向量機(jī)集成的混沌時間序列預(yù)測[J];物理學(xué)報;2007年12期
6 兀旦暉;趙晨飛;韓楠;楊帆;;混沌同步在弱信號檢測中的應(yīng)用研究[J];計算機(jī)測量與控制;2007年11期
7 姜可宇;蔡志明;王平波;陸振波;;基于RBF神經(jīng)網(wǎng)絡(luò)模型的混沌背景下諧波信號提取[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2007年05期
8 陸振波;蔡志明;姜可宇;;基于改進(jìn)的C-C方法的相空間重構(gòu)參數(shù)選擇[J];系統(tǒng)仿真學(xué)報;2007年11期
9 董海鷹;趙向陽;;基于非線性微分方程的混沌產(chǎn)生和辨識方法研究[J];傳感技術(shù)學(xué)報;2006年01期
10 崔萬照,朱長純,保文星,劉君華;混沌時間序列的支持向量機(jī)預(yù)測[J];物理學(xué)報;2004年10期
相關(guān)博士學(xué)位論文 前2條
1 吳冬梅;基于達(dá)芬振子的微弱信號檢測方法研究[D];哈爾濱工程大學(xué);2010年
2 席劍輝;混沌時間序列的長期預(yù)測方法研究[D];大連理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 李現(xiàn)美;基于GA-PSO的應(yīng)急物資儲備中心選址研究[D];河北工程大學(xué);2014年
2 張莉;基于小波—混沌理論的腦電信號分析在癲癇診斷中的應(yīng)用[D];吉林大學(xué);2009年
3 李虎明;小信號混沌檢測研究[D];西安理工大學(xué);2005年
,本文編號:2426206
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2426206.html