基于Radon-WDL變換的LFM信號(hào)參數(shù)估計(jì)與應(yīng)用
[Abstract]:In modern electronic warfare, LFM (LFM) signals have high resolution performance in range and speed because of their large bandwidth and large time-width. Therefore, it is very important to realize the parameter estimation of LFM signal with high precision. Because the traditional parameter estimation algorithm of LFM signal has poor accuracy, it can not meet the requirements of modern radar for high precision target detection. In this paper, an effective and more accurate parameter estimation method, Radon-WDL transform (RWLT), is studied in this paper. Where WDL is the combination of Wigner-Ville distribution and linear regular transformation (LCT). At the same time, in order to improve the anti-jamming performance of radar target detection, the parameter estimation method of Radon-WDL transform for typical DRFM jammer CI jamming and SMSP jamming based on LFM signal is studied. In this paper, the parameter estimation of LFM signal, multi-component LFM signal, CI interference and SMSP interference based on Radon-WDL transform is studied. The main contents are as follows: 1. On the basis of Radon-WVD transform (RWT), the Radon-WDL transform algorithm is studied, which is the Radon line integral to the WDL of the signal. Firstly, the theoretical basis of Radon-WDL transform of finite length single component LFM signal and the steps of algorithm implementation are studied. Then, Monte Carlo simulation shows that compared with Radon-WVD transform, Radon-WDL transform is effective and accurate in parameter estimation of LFM signal with finite length and single component. In order to solve the problem of crossover interference and precision of parameter estimation in multicomponent LFM signal, based on CLEAN-RWT transform, CLEAN-RWLT transform is studied. It is a combination of "CLEAN" idea and RWLT. Radon-WDL transform can not only effectively suppress the cross-term interference of WDL transform, The method of "CLEAN" can eliminate the influence of masking and estimate the multi-component LFM signal one by one. Finally, Monte Carlo simulation verifies the validity and high accuracy of CLEAN-RWLT transform for multi-component LFM signal parameter estimation. 3. Aiming at the cross-term suppression of CI interference and SMSP interference and the high precision identification of parameters, based on Radon-WVD transform, The algorithms of Radon-WDL transform for CI interference and SMSP interference are studied respectively. Radon-WDL transform can not only effectively suppress the crossover of interference WDL, but also realize the initial frequency and frequency modulation slope of CI interference and SMSP interference. Higher precision parameter estimation. Finally, Monte-Carlo simulation verifies the validity and high accuracy of Radon-WDL transform in parameter estimation of CI interference and SMSP interference compared with Radon-WVD transform.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 李永平;盧剛;田曉;唐斌;;基于模糊函數(shù)的SMSP和C&I干擾識(shí)別算法[J];航空兵器;2011年04期
2 劉鋒;孫大鵬;黃宇;陶然;王越;;基于聯(lián)合Wigner-Ville分布—隨機(jī)Hough變換改進(jìn)算法的線性調(diào)頻信號(hào)參數(shù)快速估計(jì)[J];兵工學(xué)報(bào);2009年12期
3 ;Research progress of the fractional Fourier transform in signal processing[J];Science in China(Series F:Information Sciences);2006年01期
4 趙興浩,鄧兵,陶然;分?jǐn)?shù)階傅里葉變換數(shù)值計(jì)算中的量綱歸一化[J];北京理工大學(xué)學(xué)報(bào);2005年04期
5 章步云,劉愛芳,朱曉華,劉中;基于Radon-STFT的多分量線性調(diào)頻信號(hào)檢測(cè)與參數(shù)估計(jì)[J];探測(cè)與控制學(xué)報(bào);2003年03期
6 冉鑫,馬世偉,曹家麟;基于Radon-Wigner變換的多分量LFM信號(hào)的檢測(cè)[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年02期
相關(guān)博士學(xué)位論文 前2條
1 向強(qiáng);線性正則變換相關(guān)理論問題研究[D];電子科技大學(xué);2013年
2 尉宇;線性調(diào)頻和非線性調(diào)頻信號(hào)的檢測(cè)與參數(shù)估計(jì)[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 李永平;SMSP和C&I距離假目標(biāo)欺騙干擾識(shí)別和抑制方法研究[D];電子科技大學(xué);2012年
2 謝鼎;Wigner-Ville分布在調(diào)頻信號(hào)處理中應(yīng)用[D];西安電子科技大學(xué);2010年
3 張華;低信噪比下線性調(diào)頻信號(hào)的檢測(cè)與參量估計(jì)研究[D];電子科技大學(xué);2004年
,本文編號(hào):2416723
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2416723.html