電臺(tái)個(gè)體識(shí)別研究
[Abstract]:The technology of individual identification of communication station is to obtain and detect the characteristic of individual "fingerprint" which represents the communication station by a certain method, so as to realize the recognition of individual. In this paper, the mechanism of fingerprint feature is studied based on the hardware characteristic of communication station. Combined with the development trend of feature extraction, selection and classification methods at home and abroad, the research content arrangement and the structure of the thesis are discussed. Based on the development sequence of signal analysis technology, this paper studies the theory of signal time-frequency analysis from Fourier analysis, wavelet analysis to Shearlet analysis, which lays a theoretical foundation for the research of individual identification technology in communication stations. Based on the classical fuzzy function analysis method, the wavelet analysis method with excellent time-frequency analysis performance and the new Shearlet analysis method, which can represent anisotropy, are used to improve it. The improved method is applied to individual recognition of radio station. Different from the classical fuzzy function method, the improved method uses cubic B-spline wavelet, db wavelet and Shearlet analysis to replace the original Fourier analysis in order to achieve better feature acquisition. The simulation results of MSK modulation and PSK modulation show that the effect of the improved method is less affected by the modulation method, and the effect of the ambiguity function method is greatly affected by the modulation method. Compared with the traditional fuzzy function method, db4 wavelet analysis, B-spline wavelet analysis and Shearlet analysis have better anti-noise performance under MSK modulation, and the cubic B-spline wavelet analysis method is more effective and stable. Finally, the dimension reduction and classification of signal features are studied. In order to avoid "dimensionality disaster", it is necessary to reduce the dimension of the feature to a certain extent and then use a good classifier to improve the classification effect. After studying the Fisher dimensionality reduction method, KNN classifier and SVM classifier, the influence of different classifiers on the final recognition rate is tested by experimental simulation.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN924
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐哲;雷迎科;;通信輻射源個(gè)體識(shí)別中基于l_2正則化的最大相關(guān)熵算法[J];模式識(shí)別與人工智能;2016年06期
2 桂云川;楊俊安;呂季杰;王偉;;基于經(jīng)驗(yàn)?zāi)B(tài)分解的通信輻射源分形特征提取算法[J];探測(cè)與控制學(xué)報(bào);2016年01期
3 張澤君;程偉;楊瑞娟;余沁;;航空信道下基于雙譜和信息維數(shù)的通信電臺(tái)個(gè)體識(shí)別[J];空軍預(yù)警學(xué)院學(xué)報(bào);2016年01期
4 牛連強(qiáng);趙子天;張勝男;;基于Gabor特征融合與LBP直方圖的人臉表情特征提取方法[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2016年01期
5 陳啟明;王郁;;基于維格納與短時(shí)傅里葉變換的瞬態(tài)信號(hào)特征研究[J];中國(guó)科技信息;2014年24期
6 何永亮;陳西豪;許華;江漢;劉瀟文;;利用信號(hào)圍線積分雙譜分形特征實(shí)現(xiàn)電臺(tái)識(shí)別[J];電訊技術(shù);2014年10期
7 梁華東;韓江洪;;基于維格納分布特征的雷達(dá)信號(hào)分選[J];電子測(cè)量與儀器學(xué)報(bào);2014年02期
8 陳志偉;徐志軍;王金明;徐玉龍;孔磊;;一種基于循環(huán)譜切片的通信輻射源識(shí)別方法[J];數(shù)據(jù)采集與處理;2013年03期
9 顧晨輝;王倫文;;基于瞬時(shí)包絡(luò)特征的跳頻電臺(tái)個(gè)體識(shí)別方法[J];信號(hào)處理;2012年09期
10 楊舉;盧選民;周亞建;;基于多譜與支持向量機(jī)的通信輻射源個(gè)體識(shí)別[J];計(jì)算機(jī)仿真;2010年11期
相關(guān)博士學(xué)位論文 前3條
1 蔣良孝;樸素貝葉斯分類器及其改進(jìn)算法研究[D];中國(guó)地質(zhì)大學(xué);2009年
2 任春輝;通信電臺(tái)個(gè)體特征分析[D];電子科技大學(xué);2006年
3 姜園;通信對(duì)抗中的現(xiàn)代信號(hào)處理技術(shù)應(yīng)用研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 梁江海;基于經(jīng)驗(yàn)?zāi)B(tài)分解的通信信號(hào)細(xì)微特征分析[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
2 蘭鉑;FSK和PSK信號(hào)特征研究[D];北京郵電大學(xué);2011年
3 王亮;基于時(shí)頻原子的雷達(dá)輻射源信號(hào)特征分析[D];西南交通大學(xué);2009年
,本文編號(hào):2410832
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2410832.html