高速鐵路高架橋場(chǎng)景下無(wú)線通信信道建模與研究
[Abstract]:High speed railway transportation has become the inevitable trend of railway development because of its advantages such as fast running speed, strong loading capacity, little influence by external environment, low environmental pollution, low energy consumption, high safety factor, and so on. The reliable and stable wireless communication system is the key to ensure the safe and reliable operation of high-speed train. The model of wireless channel is the key to the design of communication system. The performance of the wireless communication system can be understood by establishing the wireless channel model and simulation analysis, and the reference for the optimization and improvement of the existing communication system can be provided. In this paper, the channel model of wireless signal in viaduct scene under different influence factors is studied. The main contents are as follows: firstly, the possible types of fading in the process of wireless signal propagation are introduced, and the propagation characteristics of wireless channel and several classical channel models are analyzed from two aspects: large scale fading and small scale fading. The suitable scenarios and applicable conditions of different models are studied, and the suitable conditions of geometric stochastic channel models are discussed according to the channel characteristics of MIMO system, which provides a theoretical basis for the establishment of channel models in viaduct scenarios. Secondly, considering the characteristics of high speed railway viaduct, the influence of viaduct height and base station antenna height on the path loss in the process of wireless signal transmission is analyzed. Therefore, the path loss model based on viaduct height H and base station antenna height h and the channel statistical model of path distribution are established, and the simulation results are compared with the theoretical results. The correlation influence factors are corrected to optimize the applicability of the established channel model. Then, according to the characteristic of distance symmetry distribution between the receiving antenna of train and transmitting antenna of base station before and after passing through the base station, the viaduct area is divided into five parts, and the region model of different position in viaduct scene is established. By analyzing the path distribution of wireless signal propagation in different locations, the multipath tap delay model based on distance is established, and the path loss and the distribution characteristics of Rice K factor in different regions are simulated and analyzed. Determine the path distribution of different regions. Through the simulation analysis, the simulation results of probability density function and cumulative distribution function of the envelope of received signals in different regions are basically consistent with the simulation results of Les K factor theory. It is determined that the established channel model accords with the actual propagation scene of the wireless signal. Finally, the modeling process of the geometric stochastic channel model and the method of parameter generation of the related model are analyzed. Based on the characteristics of viaduct scene, a geometric single loop scattering model is established, and the influence factors of wireless signal spatial correlation are analyzed. The number of base station antennas, the number of mobile station antennas and the tilt angle of the antennas are simulated and verified. The simulation results are in good agreement with the measured results of relevant references, which proves the correctness of the model and the influence of different influence factors on the system performance.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN92;U285.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 張中山;王興;張成勇;呂少波;;大規(guī)模MIMO關(guān)鍵技術(shù)及應(yīng)用[J];中國(guó)科學(xué):信息科學(xué);2015年09期
2 尤力;高西奇;;大規(guī)模MIMO無(wú)線通信關(guān)鍵技術(shù)[J];中興通訊技術(shù);2014年02期
3 Tao ZHOU;Cheng TAO;Liu LIU;Jiahui QIU;Rongchen SUN;;High-speed railway channel measurements and characterizations: a review[J];Journal of Modern Transportation;2012年04期
4 劉留;陶成;邱佳慧;陳后金;;高速鐵路平原場(chǎng)景無(wú)線信道小尺度衰落特征的研究[J];鐵道學(xué)報(bào);2012年05期
5 傅海陽(yáng);陳技江;曹士坷;賈向東;;MIMO系統(tǒng)和無(wú)線信道容量研究[J];電子學(xué)報(bào);2011年10期
6 劉留;陶成;余立;董偉輝;;高速鐵路無(wú)線信道測(cè)量與信道模型探討[J];電信科學(xué);2011年05期
相關(guān)博士學(xué)位論文 前6條
1 周濤;高速鐵路無(wú)線信道傳播特性、建模與測(cè)量方法研究[D];北京交通大學(xué);2016年
2 周恩治;空間調(diào)制與大規(guī)模MIMO傳輸關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2016年
3 陳炳昊;高速鐵路場(chǎng)景MIMO信道建模研究[D];北京交通大學(xué);2015年
4 邱佳慧;高鐵場(chǎng)景下無(wú)線信道特性與系統(tǒng)性能優(yōu)化的研究[D];北京交通大學(xué);2015年
5 趙敏;高速鐵路無(wú)線寬帶信道測(cè)量、數(shù)據(jù)分析與建模研究[D];北京郵電大學(xué);2014年
6 趙慶安;在高速鐵路環(huán)境下電波傳播特性的模型分析[D];鐵道部科學(xué)研究院;2000年
相關(guān)碩士學(xué)位論文 前10條
1 李美;高鐵環(huán)境下無(wú)線信道模型研究[D];西南交通大學(xué);2016年
2 劉暢;高速鐵路中無(wú)線信道模型研究與系統(tǒng)性能分析[D];北京交通大學(xué);2016年
3 邰雙嬌;大規(guī)模MIMO系統(tǒng)的天線選擇技術(shù)研究[D];大連海事大學(xué);2016年
4 鞏苗;MIMO無(wú)線信道建模分析與仿真實(shí)現(xiàn)[D];蘭州交通大學(xué);2015年
5 宋騰輝;高鐵場(chǎng)景下OFDM/MIMO系統(tǒng)多普勒頻偏估計(jì)算法研究[D];北京交通大學(xué);2016年
6 程文璞;高速移動(dòng)環(huán)境中基于理論方法的無(wú)線信道建模研究[D];北京交通大學(xué);2014年
7 賈貴源;高速鐵路無(wú)線信道模型研究及仿真分析[D];北京郵電大學(xué);2014年
8 劉苗;高速車地?zé)o線通信MIMO技術(shù)研究[D];西南交通大學(xué);2013年
9 楊曦;基于無(wú)線幾何隨機(jī)特性的MIMO信道建模及性能研究[D];華中科技大學(xué);2013年
10 吳蘇蔓;高速移動(dòng)環(huán)境下MIMO無(wú)線信道的建模及仿真[D];杭州電子科技大學(xué);2011年
,本文編號(hào):2406175
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2406175.html