大場(chǎng)景PolSAR圖像人造目標(biāo)檢測(cè)方法研究
[Abstract]:Artificial target detection is an important part of remote sensing data application, and is the basis of disaster rescue, military reconnaissance and other applications. The performance and speed of detection directly affect the subsequent practical applications. Among the many remote sensing data, PolSAR is active imaging, which has the characteristics of all-day, all-weather, which has a great advantage in the application of target real-time detection. At present, the ability of PolSAR image acquisition has been greatly improved, the area covered by the image and the amount of data are more and more large, which provides a data basis for the application of PolSAR image target detection. However, most of the traditional algorithms focus on the accuracy index, when the amount of image data is too large, the detection processing time is also greatly increased. In many occasions based on artificial target detection, it is necessary to complete the related work in a limited time, which puts forward the processing speed requirements for large scene PolSAR image artificial target detection. How to efficiently complete the artificial target detection of large scene PolSAR images under the condition of satisfying the requirement of precision has become the main problem in the research. In this paper, the detection of artificial targets in large scene PolSAR images is the main research content. Firstly, the characteristics of artificial targets in PolSAR images are defined by analyzing the representation form of PolSAR images and the characteristics of artificial targets. On this basis, the basic detection theory is studied. Then the traditional target extraction algorithm is optimized and the detection algorithm based on fast Wishart computation is designed. Then, the feature of image uniformity description factor is designed. The feature has the ability to extract the target region, and the speed of extraction is improved compared with the traditional texture feature. Three polarimetric target detection algorithms based on the feature of image uniformity description factor are designed. According to the different amount of image information, the three algorithms have different detection performance and detection speed to meet different accuracy and efficiency requirements. Finally, the experimental data are selected to carry out artificial target detection in terrestrial environment and marine ship target detection experiment, and the algorithm is evaluated from three aspects: target detection accuracy, key target detection situation and processing time. Experimental results show that the four detection algorithms designed in this paper have the ability to detect artificial targets in large scene PolSAR images. Among them, the performance of the detection algorithm based on fast Wishart computation is related to the selection of supervisory information, which has a great potential for performance improvement. Three detection algorithms based on the feature of image uniformity description factor can complete the task of artificial target detection in a relatively short time and the detection accuracy is higher than that of the traditional method. The three detection algorithms have different usage of image information, and their detection performance and processing speed are quite different, which can meet different requirements of accuracy and efficiency.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN957.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 晉瑞錦;周偉;楊健;;大場(chǎng)景下的極化SAR機(jī)場(chǎng)檢測(cè)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年12期
2 朱騰;余潔;謝東海;劉利敏;;粒子群優(yōu)化算法在全極化SAR影像非監(jiān)督分類中的應(yīng)用[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2014年01期
3 王娜;時(shí)公濤;陸軍;匡綱要;;一種新的極化SAR圖像目標(biāo)CFAR檢測(cè)方法[J];電子與信息學(xué)報(bào);2011年02期
4 安文韜;才長(zhǎng)帥;楊健;;極化SAR圖像的人工目標(biāo)檢測(cè)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
5 劉秀清,楊震,楊汝良;全極化合成孔徑雷達(dá)圖像極化白化濾波參數(shù)估計(jì)方法的改進(jìn)研究[J];電子學(xué)報(bào);2003年12期
6 劉國(guó)慶,黃順吉,A.Torre,F.Rubertone;一種新的多視全極化SAR目標(biāo)檢測(cè)器及其性能分析[J];信號(hào)處理;1998年02期
相關(guān)博士學(xué)位論文 前1條
1 鄧少平;高分辨率極化SAR影像典型線狀目標(biāo)半自動(dòng)提取[D];武漢大學(xué);2013年
相關(guān)碩士學(xué)位論文 前7條
1 袁琳;PolSAR圖像建筑物密度檢測(cè)方法研究[D];哈爾濱工業(yè)大學(xué);2016年
2 文雯;基于模糊粒子群優(yōu)化和目標(biāo)分解的極化SAR影像地物分類[D];西安電子科技大學(xué);2014年
3 劉佳穎;基于粒子群優(yōu)化和Freeman分解的SAR圖像分割與分類[D];西安電子科技大學(xué);2014年
4 張世吉;極化SAR目標(biāo)檢測(cè)算法研究及軟件設(shè)計(jì)[D];西安電子科技大學(xué);2014年
5 白曉靜;基于Cloude分解的特征參數(shù)分析及快速替代方法[D];電子科技大學(xué);2013年
6 秦先祥;極化SAR圖像目標(biāo)檢測(cè)方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
7 韓昭穎;多極化合成孔徑雷達(dá)圖像目標(biāo)檢測(cè)研究[D];中國(guó)科學(xué)院研究生院(電子學(xué)研究所);2005年
,本文編號(hào):2393046
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2393046.html