基于混合壓縮感知的分簇式網(wǎng)絡數(shù)據(jù)收集方法
發(fā)布時間:2018-12-23 10:35
【摘要】:為了減少分簇式傳感器網(wǎng)絡中的數(shù)據(jù)傳輸量并均衡網(wǎng)絡負載,提出了一種采用混合壓縮感知(compressive sensing,CS)進行數(shù)據(jù)收集的方法.1)選取各臨時簇中距離簇質心最近的一些節(jié)點為候選簇頭節(jié)點,然后依據(jù)已確定的簇頭節(jié)點到未確定的候選簇頭節(jié)點的距離依次確定簇頭;2)各普通節(jié)點選擇加入距離自己最近的簇中;3)貪婪構建一棵以Sink節(jié)點為根節(jié)點并連接所有簇頭節(jié)點的數(shù)據(jù)傳輸樹,對數(shù)據(jù)傳輸量高于門限值的節(jié)點使用CS壓縮數(shù)據(jù)傳輸.仿真結果表明:當壓縮比率為10時,數(shù)據(jù)傳輸量比Clustering without CS和SPT without CS分別減少了75%和65%,比SPT with Hybrid CS和Clustering with Hybrid CS分別減少了35%和20%;節(jié)點數(shù)據(jù)傳輸量標準差比Clustering without CS和SPT without CS分別減少了62%和81%,比SPT with Hybrid CS和Clustering with Hybrid CS分別減少了41%和19%.
[Abstract]:In order to reduce the amount of data transmission in cluster sensor networks and balance the network load, a hybrid compression sensing (compressive sensing, is proposed. CS). 1) selecting some nodes nearest to the center of cluster as candidate cluster head nodes, and then determining the cluster head according to the distance from the determined cluster head node to the undetermined candidate cluster head node. 2) each common node chooses to join the cluster nearest to itself; 3) A data transmission tree with Sink node as root node and connecting all cluster head nodes is constructed greedily, and the data transmission is compressed by CS for nodes whose data transmission amount is higher than the threshold. The simulation results show that when the compression ratio is 10:00, the amount of data transmission is 75% and 65% less than that of Clustering without CS and SPT without CS, and 35% and 20% less than that of SPT with Hybrid CS and Clustering with Hybrid CS, respectively. The standard deviation of node data transmission is 62% and 81% less than that of Clustering without CS and SPT without CS, 41% and 19% less than that of SPT with Hybrid CS and Clustering with Hybrid CS, respectively.
【作者單位】: 湘潭大學信息工程學院;江蘇省無線傳感網(wǎng)高技術研究重點實驗室(南京郵電大學);智能計算與信息處理教育部重點實驗室(湘潭大學);湖南大學信息科學與工程學院;
【基金】:國家自然科學基金項目(61379115,61110215,61372049,61602398) 湖南省自然科學基金項目(2015JJ4047,12JJ9021,13JJ8006) 江蘇省無線傳感網(wǎng)高技術研究重點實驗室開發(fā)課題(WSNLBKF201501) 湖南省重點學科建設基金項目~~
【分類號】:TP212.9;TN929.5
本文編號:2389865
[Abstract]:In order to reduce the amount of data transmission in cluster sensor networks and balance the network load, a hybrid compression sensing (compressive sensing, is proposed. CS). 1) selecting some nodes nearest to the center of cluster as candidate cluster head nodes, and then determining the cluster head according to the distance from the determined cluster head node to the undetermined candidate cluster head node. 2) each common node chooses to join the cluster nearest to itself; 3) A data transmission tree with Sink node as root node and connecting all cluster head nodes is constructed greedily, and the data transmission is compressed by CS for nodes whose data transmission amount is higher than the threshold. The simulation results show that when the compression ratio is 10:00, the amount of data transmission is 75% and 65% less than that of Clustering without CS and SPT without CS, and 35% and 20% less than that of SPT with Hybrid CS and Clustering with Hybrid CS, respectively. The standard deviation of node data transmission is 62% and 81% less than that of Clustering without CS and SPT without CS, 41% and 19% less than that of SPT with Hybrid CS and Clustering with Hybrid CS, respectively.
【作者單位】: 湘潭大學信息工程學院;江蘇省無線傳感網(wǎng)高技術研究重點實驗室(南京郵電大學);智能計算與信息處理教育部重點實驗室(湘潭大學);湖南大學信息科學與工程學院;
【基金】:國家自然科學基金項目(61379115,61110215,61372049,61602398) 湖南省自然科學基金項目(2015JJ4047,12JJ9021,13JJ8006) 江蘇省無線傳感網(wǎng)高技術研究重點實驗室開發(fā)課題(WSNLBKF201501) 湖南省重點學科建設基金項目~~
【分類號】:TP212.9;TN929.5
【相似文獻】
相關期刊論文 前6條
1 楊海紅;張霞;;基于HLA仿真數(shù)據(jù)收集方法的研究[J];山西大學學報(自然科學版);2011年S2期
2 張波;劉郁林;王開;王嬌;;基于概率稀疏隨機矩陣的壓縮數(shù)據(jù)收集方法[J];電子與信息學報;2014年04期
3 汪淑麗;;基于網(wǎng)絡編碼的WSNs數(shù)據(jù)收集方法[J];傳感器與微系統(tǒng);2012年04期
4 成光;一種基于XML的WEB數(shù)據(jù)收集方法[J];農(nóng)業(yè)網(wǎng)絡信息;2005年07期
5 胡美枝;鄭緯民;武永衛(wèi);楊廣文;;一種高效的網(wǎng)格監(jiān)控數(shù)據(jù)收集方法[J];高技術通訊;2008年04期
6 ;[J];;年期
,本文編號:2389865
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2389865.html
最近更新
教材專著