結(jié)合BIC準(zhǔn)則和ECM算法的可變類SAR影像分割
發(fā)布時(shí)間:2018-12-22 08:23
【摘要】:為實(shí)現(xiàn)合成孔徑雷達(dá)(SAR)影像分割中類別數(shù)的自動(dòng)確定,提出一種基于貝葉斯信息準(zhǔn)則(BIC)的可變類SAR影像分割算法.該算法以Gamma分布建模SAR影像同質(zhì)區(qū)域內(nèi)部像素光譜測度的統(tǒng)計(jì)分布特性;結(jié)合BIC準(zhǔn)則構(gòu)建整幅SAR影像似然函數(shù)模型;并在此模型中引入類別數(shù)補(bǔ)償項(xiàng),繼而提高BIC測度對影像分割結(jié)果的描述精度.采用期望條件最大化(ECM)算法估計(jì)其模型參數(shù);通過遍歷所有可能類別數(shù),取最小BIC值對應(yīng)的類別數(shù)作為最佳類別數(shù).采用提出的算法分割模擬和真實(shí)SAR影像,模擬SAR影像分割結(jié)果的定性和定量分析表明,基于BIC準(zhǔn)則的ECM算法可以實(shí)現(xiàn)類別數(shù)的自動(dòng)確定,并可得到最優(yōu)分割結(jié)果.通過對真實(shí)SAR影像分割結(jié)果的定性評(píng)價(jià),進(jìn)而證明了可變類SAR影像分割算法的準(zhǔn)確性和可行性.
[Abstract]:In order to automatically determine the number of categories in (SAR) image segmentation of synthetic Aperture Radar (SAR), a variable class SAR image segmentation algorithm based on Bayesian Information Criterion (BIC) is proposed. The algorithm uses Gamma distribution to model the statistical distribution of the pixel spectral measure in the homogeneous region of SAR image, and combines the BIC criterion to construct the likelihood function model of the whole SAR image. In this model, the category number compensation term is introduced to improve the accuracy of the BIC measure in describing the image segmentation results. The expected condition maximization (ECM) algorithm is used to estimate the model parameters, and the number of classes corresponding to the minimum BIC value is taken as the best category number by traversing all possible categories. The qualitative and quantitative analysis of the segmentation results of simulated SAR images using the proposed algorithm shows that the ECM algorithm based on the BIC criterion can automatically determine the number of categories and obtain the optimal segmentation results. Through the qualitative evaluation of the real SAR image segmentation results, the accuracy and feasibility of the variable class SAR image segmentation algorithm are proved.
【作者單位】: 遼寧工程技術(shù)大學(xué)測繪與地理科學(xué)學(xué)院遙感科學(xué)與應(yīng)用研究所;
【基金】:國家自然科學(xué)基金青年基金項(xiàng)目(41301479) 遼寧省自然科學(xué)基金項(xiàng)目(2015020090)
【分類號(hào)】:TN957.52
本文編號(hào):2389563
[Abstract]:In order to automatically determine the number of categories in (SAR) image segmentation of synthetic Aperture Radar (SAR), a variable class SAR image segmentation algorithm based on Bayesian Information Criterion (BIC) is proposed. The algorithm uses Gamma distribution to model the statistical distribution of the pixel spectral measure in the homogeneous region of SAR image, and combines the BIC criterion to construct the likelihood function model of the whole SAR image. In this model, the category number compensation term is introduced to improve the accuracy of the BIC measure in describing the image segmentation results. The expected condition maximization (ECM) algorithm is used to estimate the model parameters, and the number of classes corresponding to the minimum BIC value is taken as the best category number by traversing all possible categories. The qualitative and quantitative analysis of the segmentation results of simulated SAR images using the proposed algorithm shows that the ECM algorithm based on the BIC criterion can automatically determine the number of categories and obtain the optimal segmentation results. Through the qualitative evaluation of the real SAR image segmentation results, the accuracy and feasibility of the variable class SAR image segmentation algorithm are proved.
【作者單位】: 遼寧工程技術(shù)大學(xué)測繪與地理科學(xué)學(xué)院遙感科學(xué)與應(yīng)用研究所;
【基金】:國家自然科學(xué)基金青年基金項(xiàng)目(41301479) 遼寧省自然科學(xué)基金項(xiàng)目(2015020090)
【分類號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 王智順;畢厚杰;朱梅英;;ECM標(biāo)準(zhǔn)的規(guī)程性能分析[J];南京郵電學(xué)院學(xué)報(bào);1993年03期
2 尹杰;楊魁;段毅;;面向?qū)ο蟮臉O化干涉SAR影像分割算法研究[J];測繪通報(bào);2013年06期
3 ;對抗反艦巡航導(dǎo)彈的ECM方案[J];航天電子對抗;1994年01期
4 歐陽毅,朱桐華,解希順,鄭虎鳴;ECM使用壽命及FEP電阻率的估算[J];電聲技術(shù);2005年05期
5 徐才宏;通用ECM評(píng)估方法[J];艦船電子對抗;1995年05期
,本文編號(hào):2389563
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2389563.html
最近更新
教材專著