高鐵毫米波通信與雷達(dá)探測(cè)波束賦形技術(shù)
[Abstract]:The communication system of high-speed railway is divided into a special wireless communication system for train dispatching and control and a broadband wireless communication system for connecting passengers on a train to the Internet. At present, most of the wireless communication systems used in railway dispatching and control are still GSM-R system, and the passengers on the train mainly rely on public network to connect to the Internet. However, the mobile performance of the public network is far from meeting the requirements of the speed and quality of the network, so it is necessary to develop a new frequency band for high-speed railway wireless communication. It is imperative for the railway wireless communication system to evolve to the next generation mobile communication system. In addition, the natural disasters such as landslide, debris flow and other natural disasters that often travel through remote and harsh mountain areas in China threaten the safety of railway operation for a long time, and the disaster monitoring technology suitable for high-speed railway scene also needs to be studied urgently. Millimeter-wave has great potential in the next generation wireless communication system because of its ability to realize ultra-high speed data transmission rate. Because of its rich resources and high detection precision, it is also of great significance in the field of radar detection. The millimeter-wave communication and detection technology is integrated into a base station, which can provide high rate wireless transmission function, disaster monitoring and early warning function as one of the security base station. Radar equipment and communication equipment are co-located, common baseband, common transmission, this security base station equipment is not easy to be damaged, and has the advantages of low system cost, high detection efficiency and so on. Therefore, based on C-RAN (Cloud-Radio Access Network) communication and detection fusion architecture, this paper has great theoretical and practical significance for the study of millimeter-wave characteristics and millimeter-wave beamforming technology. In order to improve the performance of communication and detection system, the transmission characteristics of millimeter wave, beamforming technology and scanning scheme of detecting beam are studied in this paper. Firstly, a millimeter-wave communication and detection fusion architecture based on C-RAN is introduced to study the applicable frequency band of the fusion system from the aspects of millimeter-wave transmission characteristics and detection resolution requirements. At the same time, the relationship between millimeter wave communication and detection range and transmission power is studied. Beamforming technology is very important for high speed millimeter-wave communication. Therefore, the opportunistic beamforming technique suitable for high-speed train scenarios is studied in detail in this paper. Firstly, the principle of beamforming and the influencing factors of beamwidth are introduced and analyzed. Then, two kinds of opportunistic beamforming techniques are introduced, and the effects of the number of base station antennas, the number of vehicle stations and the DOA estimation error on the system gain caused by the beamforming are analyzed. In addition, a new beamforming technique based on position information is proposed to further improve the performance of the system. Combining the interference factor between two beams and the system capacity of single and double beams, the suitable switching points of single and double beams are studied. In order to improve the disaster detection efficiency of the integrated system, an adaptive beamforming scheme for disaster detection is proposed in this paper. Based on the characteristics of millimeter-wave transmission and the detection requirements, a frequency-division multi-beam detection scheme is proposed, and an adaptive beam scanning scheme is proposed, and different beam detection schemes are used in different detection regions. The simulation results show that the proposed adaptive beamforming scheme can not only meet the detection and early warning needs of each region but also reduce the complexity of the system to a certain extent. It is an effective beamforming scheme for disaster detection.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN928;TN95
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐亮軍;謝顯中;;發(fā)射波束賦形消除感知用戶對(duì)主用戶干擾算法[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2011年02期
2 趙霞;;基于種群技術(shù)的數(shù)字波束賦形算法分析[J];信息技術(shù);2013年02期
3 高倩;張福金;;基于高速鐵路通信的多波束機(jī)會(huì)波束賦形技術(shù)[J];計(jì)算機(jī)工程與應(yīng)用;2013年18期
4 張鳳林;;一種新型波束賦形天線[J];遙測(cè)遙控;1990年05期
5 黃瑩;呂剛明;朱世華;;接收矢量估計(jì)輔助的協(xié)調(diào)波束賦形算法[J];通信學(xué)報(bào);2014年02期
6 蔣新聰;陳丹;劉琳;;天線陣列的波束賦形仿真[J];山西電子技術(shù);2008年02期
7 曾云寶;趙義忠;朱永芬;王文博;;一種基于特征值分布的波束賦形方案[J];電子與信息學(xué)報(bào);2006年12期
8 趙霞;;4G系統(tǒng)中波束賦形技術(shù)的研究[J];移動(dòng)通信;2011年24期
9 劉龍偉;李文剛;李鳳嬌;;衛(wèi)星導(dǎo)航定位信息輔助的協(xié)作波束賦形算法[J];西安電子科技大學(xué)學(xué)報(bào);2013年03期
10 劉毅;陳曉鵬;張繼光;向文豪;張博勛;;協(xié)作網(wǎng)絡(luò)中基于中繼選擇的協(xié)作波束賦形算法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2011年05期
相關(guān)會(huì)議論文 前8條
1 張洋;方建新;;波束賦形干擾雷達(dá)網(wǎng)[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年
2 馬靜;朱瑞平;何炳發(fā);;一種僅相位加權(quán)并局部微擾的波束賦形方法[A];2009年全國(guó)天線年會(huì)論文集(上)[C];2009年
3 李緒平;李斌;;波導(dǎo)縫隙陣列天線波束賦形方法研究[A];2009年全國(guó)天線年會(huì)論文集(上)[C];2009年
4 王春波;龐亮;;TD-SCDMA維護(hù)思路探討[A];培養(yǎng)創(chuàng)新型人才、推進(jìn)科技創(chuàng)新、推動(dòng)轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式——內(nèi)蒙古自治區(qū)第六屆自然科學(xué)學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2011年
5 彭中衛(wèi);王建;;一種實(shí)現(xiàn)寬帶波束賦形的相位優(yōu)化方法[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年
6 張權(quán);沈建靚;嚴(yán)繼軍;玄曉波;李欣;;差分進(jìn)化算法在陣列天線波束賦形中的應(yīng)用[A];2010年全國(guó)電磁兼容會(huì)議論文集[C];2010年
7 謝振;陳肇安;聶少波;;中國(guó)移動(dòng)WLAN建設(shè)新思路探討[A];廣東通信2010青年論壇優(yōu)秀論文集[C];2010年
8 路志勇;杜彪;楊可忠;;橢圓波束賦形雙偏置天線的設(shè)計(jì)[A];2003'全國(guó)微波毫米波會(huì)議論文集[C];2003年
相關(guān)重要報(bào)紙文章 前3條
1 安捷倫科技(中國(guó))有限公司;破解四大測(cè)試難題[N];通信產(chǎn)業(yè)報(bào);2012年
2 大唐移動(dòng) 索士強(qiáng);占領(lǐng)LTE制高點(diǎn):大唐移動(dòng)推演TD-LTE-A[N];通信產(chǎn)業(yè)報(bào);2010年
3 羅德與施瓦茨中國(guó)有限公司;TD—LTE測(cè)試解決方案已成型[N];通信產(chǎn)業(yè)報(bào);2012年
相關(guān)博士學(xué)位論文 前4條
1 姜偉鵬;多源多宿場(chǎng)景下的波束賦形相關(guān)技術(shù)研究[D];北京郵電大學(xué);2015年
2 程夢(mèng);高鐵下一代無(wú)線通信系統(tǒng)的波束賦形與大規(guī)模多天線傳輸技術(shù)研究[D];西南交通大學(xué);2015年
3 耿健;基于TDD的較大規(guī)模天線系統(tǒng)發(fā)端關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2014年
4 黃帆;移動(dòng)通信系統(tǒng)中協(xié)作傳輸技術(shù)的研究[D];北京郵電大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 程祥樂;高鐵場(chǎng)景下Massive MIMO技術(shù)應(yīng)用研究[D];西南交通大學(xué);2015年
2 王勇;寬帶集群系統(tǒng)群組場(chǎng)景下行鏈路波束賦形算法研究[D];哈爾濱工業(yè)大學(xué);2015年
3 武龍;隨機(jī)波束賦形在MIMO中的應(yīng)用研究[D];電子科技大學(xué);2015年
4 劉黎;多用戶MIMO廣播信道波束賦形與能效分析[D];電子科技大學(xué);2014年
5 丁寧;無(wú)線傳感器網(wǎng)絡(luò)中協(xié)作波束賦形及其旁瓣抑制算法[D];電子科技大學(xué);2015年
6 姜昌旭;基于基站選擇的網(wǎng)絡(luò)干擾管理研究[D];電子科技大學(xué);2015年
7 張帆;面向3D MIMO的協(xié)作傳輸技術(shù)以及無(wú)線資源調(diào)度算法研究[D];東南大學(xué);2015年
8 陳培磊;新一代無(wú)線局域網(wǎng)中多用戶波束賦形技術(shù)研究[D];南京郵電大學(xué);2015年
9 施洋;TD-LTE下行鏈路波束賦形技術(shù)研究[D];武漢郵電科學(xué)研究院;2015年
10 徐雨晴;IEEE802.11ax波束賦形技術(shù)研究[D];西南交通大學(xué);2016年
,本文編號(hào):2376006
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2376006.html