140MHz中頻收發(fā)通道硬件電路研究與實(shí)現(xiàn)
[Abstract]:With the rapid development of electronic technology, satellite communication technology is more and more deep into various fields of society. As an important part of if receiver in satellite communication, if transceiver is developing towards high frequency, large dynamic range, high sensitivity, high linearity and high resolution. This paper aims at the actual demand of the 140MHz if transceiver channel in satellite communication. Firstly, by comparing the schemes of various receiving channels and transmitting channels, the if transceiver channel scheme of this paper is determined. Then, the working principle and key functional components of the transceiver channel involved in this paper are deeply analyzed. On this basis, the circuit is developed by using ADS (Advanced Design System) simulation analysis combined with actual debugging. The 140MHz transceiver channel in this paper requires that the receiving channel receive frequency 140MHz 鹵5 MHz, power is-30dBm~60dBm signal, and generate the intermediate frequency signal of frequency 14.96MHz 鹵5 MHz, power 0dBm 鹵1dB; The transmission channel is required to convert the modulation signal of 25MHz 鹵5MHz ~ 0 dBm 鹵1dB to 140MHz 鹵5MHz, and the output power is -20dBm 鹵1dB. The main contents of this paper are as follows: 1. When the input signal frequency is 140MHz 鹵5MHz and the power is in the large dynamic range of 30dBm~-60dBm, the receiving channel adopts the scheme of superheterodyne and the application of voltage-controlled gain amplifier circuit. The power flatness of output signal is less than that of 1dB in 9.96MHz~19.96MHz. Secondly, the noise coefficient and cascade noise coefficient of each function part in the receiving channel are calculated and analyzed, and the low noise design of the receiving channel is realized. Thirdly, according to the requirements of the emission channel, two emission channels with 140MHz 鹵5MHz-20dBm 鹵1dB signal output are designed. Fourthly, the circuit is tested. The test results show that the noise coefficient of the receiving channel is 3.5 dB when the input is small signal (- 60dBm), and the noise coefficient of the receiving channel is 9.8 dB when the large signal (- 30dBm) is input, which meets the requirement of this design lower than that of 10dB. Other test indicators also meet the design requirements.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN927.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 崔立良;;無(wú)線通信射頻收發(fā)系統(tǒng)設(shè)計(jì)探究[J];數(shù)字技術(shù)與應(yīng)用;2013年05期
2 劉柱;文繼國(guó);;無(wú)線發(fā)射系統(tǒng)的射頻前端設(shè)計(jì)[J];湖南城市學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年03期
3 郭俊杰;楊新民;;多射頻前端衛(wèi)星接收機(jī)實(shí)驗(yàn)平臺(tái)研究[J];大眾科技;2011年05期
4 李燕山;連紅運(yùn);孫志林;;全球衛(wèi)星定位系統(tǒng)的現(xiàn)狀及未來[J];創(chuàng)新科技;2006年07期
5 徐建,孫大有;無(wú)線接收機(jī)RF前端研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年03期
相關(guān)會(huì)議論文 前1條
1 李夢(mèng);;載波相位平滑偽距在雙向測(cè)距與時(shí)間同步中的應(yīng)用[A];第四屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S4 原子鐘技術(shù)與時(shí)頻系統(tǒng)[C];2013年
相關(guān)碩士學(xué)位論文 前3條
1 劉雷;UHF RFID射頻前端關(guān)鍵技術(shù)研究及電路優(yōu)化[D];杭州電子科技大學(xué);2011年
2 黃佳;S波段射頻收發(fā)前端的研究與實(shí)現(xiàn)[D];電子科技大學(xué);2010年
3 黃明;射頻接收前端的設(shè)計(jì)與研究[D];電子科技大學(xué);2005年
,本文編號(hào):2372791
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2372791.html