自適應閾值的視覺注意模型SAR艦船檢測算法
發(fā)布時間:2018-11-22 08:28
【摘要】:為了解決SAR圖像基于人類視覺注意模型艦船檢測算法中需要人工確定經(jīng)驗閾值的問題,提出一種自適應閾值的視覺注意模型SAR艦船檢測算法。引入最大類間方差(OTSU)法確定自適應閾值進行圖像初分割,再應用視覺注意模型得到視覺顯著圖,最終根據(jù)顯著圖的統(tǒng)計特性進行自適應閾值分割檢測出艦船目標。該算法相對于已有的視覺注意模型艦船檢測算法自動化程度更高,與視覺注意模型艦船檢測算法以及目前普遍使用的雙參數(shù)CFAR、K-CFAR、KSW雙閾值算法同時處理3種星載SAR數(shù)據(jù)——ENVISAT ASAR(25 m)、Sentinel-1(10m)和Cosmo-SkyMed(3m),進行對比分析實驗,實驗結果證明該算法簡單、準確、高效。
[Abstract]:In order to solve the problem of manually determining the empirical threshold in the ship detection algorithm of SAR image based on human visual attention model, a visual attention model SAR ship detection algorithm based on adaptive threshold is proposed. The maximum inter-class variance (OTSU) method is introduced to determine the adaptive threshold for initial image segmentation, and then the visual salient map is obtained by using visual attention model. Finally, according to the statistical characteristics of the salience map, the adaptive threshold segmentation is carried out to detect the ship target. Compared with the existing visual attention model ship detection algorithm, this algorithm has a higher degree of automation, compared with the visual attention model ship detection algorithm and the widely used two-parameter CFAR,K-CFAR,. Three kinds of spaceborne SAR data, ENVISAT ASAR (25 m), Sentinel-1 (10m) and Cosmo-SkyMed (3m), are processed simultaneously by KSW double threshold algorithm. The experimental results show that the algorithm is simple, accurate and efficient.
【作者單位】: 山東科技大學測繪科學與工程學院;中國測繪科學研究院;
【基金】:國家基礎測繪科技計劃(2016KJ0103) 中國博士后科學基金資助項目(2016M591219)
【分類號】:TN957.52
本文編號:2348694
[Abstract]:In order to solve the problem of manually determining the empirical threshold in the ship detection algorithm of SAR image based on human visual attention model, a visual attention model SAR ship detection algorithm based on adaptive threshold is proposed. The maximum inter-class variance (OTSU) method is introduced to determine the adaptive threshold for initial image segmentation, and then the visual salient map is obtained by using visual attention model. Finally, according to the statistical characteristics of the salience map, the adaptive threshold segmentation is carried out to detect the ship target. Compared with the existing visual attention model ship detection algorithm, this algorithm has a higher degree of automation, compared with the visual attention model ship detection algorithm and the widely used two-parameter CFAR,K-CFAR,. Three kinds of spaceborne SAR data, ENVISAT ASAR (25 m), Sentinel-1 (10m) and Cosmo-SkyMed (3m), are processed simultaneously by KSW double threshold algorithm. The experimental results show that the algorithm is simple, accurate and efficient.
【作者單位】: 山東科技大學測繪科學與工程學院;中國測繪科學研究院;
【基金】:國家基礎測繪科技計劃(2016KJ0103) 中國博士后科學基金資助項目(2016M591219)
【分類號】:TN957.52
【相似文獻】
相關期刊論文 前2條
1 婁智;鄧浩;陳香;姚博;楊基海;;基于自適應閾值處理的表面肌電信號小波去噪研究[J];生物醫(yī)學工程學雜志;2014年04期
2 田玉靜;董玉民;左紅偉;;時頻結合自適應閾值小波包消噪算法[J];應用聲學;2010年04期
相關碩士學位論文 前1條
1 錢一名;航空數(shù)據(jù)鏈的認知抗干擾技術研究與FPGA實現(xiàn)[D];北京工業(yè)大學;2016年
,本文編號:2348694
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2348694.html