直流特高壓超長(zhǎng)站距光中繼系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:UHV transmission technology is the need of the current national power grid development strategy. With the continuous upgrading of line voltage, the span between stations becomes larger and larger, and the optical signal will decay with the increase of transmission distance. This brings new difficulties to power system communication, so the study of reliable long distance optical transmission system is of great significance to power grid construction. In this paper, the key problems of ultra-long station distance optical transmission in power system are studied from three aspects: line loss, dispersion and limited optical signal-to-noise ratio. The 400km ultra-long station distance optical transmission is realized by optical relay and remote pump (non-optical relay). In particular, a "self-contained" independent power supply optical relay device installed in the tower is proposed to realize the super-long distance optical communication. The single-wave 10G optical transmission system was deployed and tested on the 鹵800 kV UHV line from Hami to Zhengzhou (Shicheng-Huanxian section). The link loss, joint loss, dispersion loss and the receptivity of the equipment are calculated in detail, and the predetermined distance between the optical amplifier and the gain unit in the engineering is determined. During the implementation of the project, the position of the pole tower of the optical relay station and Raman remote gain unit is determined in accordance with the limit of optical loss according to the previous calculation, and the system is deployed and verified in the actual production environment. The transmission distance above 400km is realized in both systems. Finally, the two systems are tested and compared. The research results show that the optical communication transmission between substation and substation in UHV transmission line can be realized, which is of practical significance for future engineering construction and scheme design and popularization.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN929.1;TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 喻煌;李詩(shī)愈;劉志堅(jiān);余志強(qiáng);莫琦;楊奇;賀志學(xué);羅鳴;;400Gbit/s高速大容量光通信系統(tǒng)單模光纖設(shè)計(jì)與制備[J];光通信研究;2015年02期
2 雷學(xué)義;姜輝;陳國(guó)棟;熊煌;李樹(shù)辰;孫軍強(qiáng);;電力系統(tǒng)超長(zhǎng)站距光傳輸塔內(nèi)中繼器的最優(yōu)化設(shè)計(jì)[J];光學(xué)與光電技術(shù);2014年03期
3 鄭波;;高速率WDM系統(tǒng)光信噪比(OSNR)計(jì)算方法及軟件實(shí)現(xiàn)[J];郵電設(shè)計(jì)技術(shù);2014年01期
4 張鵬飛;王華奎;;16×40Gbit/s DWDM系統(tǒng)色散補(bǔ)償和調(diào)制方式研究[J];光通信研究;2013年01期
5 白歌樂(lè);金翠;;高寒地區(qū)光通信中繼站建設(shè)方案分析[J];內(nèi)蒙古電力技術(shù);2012年04期
6 孫海蓬;劉衛(wèi)華;王子龍;;特高壓超長(zhǎng)距光傳輸?shù)闹欣^站應(yīng)用研究[J];電力系統(tǒng)通信;2011年09期
7 李濤;單蓉;;基于放大器和遙泵的超長(zhǎng)距通信網(wǎng)傳輸方案研究[J];廣西民族師范學(xué)院學(xué)報(bào);2010年05期
8 張帆;張巍;馮雪;彭江得;;低泵浦功率的遙泵放大在超長(zhǎng)跨距密集波分復(fù)用系統(tǒng)中的應(yīng)用[J];光子學(xué)報(bào);2006年09期
9 原榮;全光通信技術(shù)講座 第四講 全光中繼技術(shù)[J];廣西通信技術(shù);1997年03期
相關(guān)碩士學(xué)位論文 前3條
1 白歌樂(lè);內(nèi)蒙古電力通信網(wǎng)無(wú)中繼超長(zhǎng)距離光纖傳輸系統(tǒng)的研究與應(yīng)用[D];內(nèi)蒙古大學(xué);2014年
2 徐健;超長(zhǎng)跨距光傳輸系統(tǒng)中遙泵技術(shù)的研究與應(yīng)用[D];武漢郵電科學(xué)研究院;2012年
3 張延童;電力線路塔上光中繼站相關(guān)技術(shù)研究[D];山東大學(xué);2012年
,本文編號(hào):2318655
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2318655.html