改進LMD算法在管道泄漏中的應用研究
[Abstract]:In view of the difficulty of extracting leakage characteristic information and the low accuracy of leak location in the process of natural gas pipeline leakage detection, this paper applies the local mean decomposition (Local Mean Decomposition,LMD) algorithm to pipeline leakage detection to realize the decomposition of pipeline leakage signal. Feature extraction and leak location. Firstly, this paper introduces the theoretical algorithm of local mean decomposition, and applies it to signal decomposition. As an effective method to deal with non-stationary random signals, LMD has the adaptive property and completeness of signal decomposition. However, due to the influence of the algorithm itself, it is easy to produce modal aliasing. Aiming at the phenomenon of modal aliasing, the problem of modal aliasing in the process of LMD decomposition is suppressed by means of the total local mean decomposition algorithm (Ensemble Local Mean Decomposition,ELMD) and the auxiliary noise technique. Secondly, the useful information is often affected and interfered by various noises in the transmission process, which reduces or confuses the useful signals in the signal source. In order to enhance the useful signal suppress the noise interference and ensure that the extracted eigenvalue can represent the signal feature it is necessary to pre-process the original signal. In order to avoid the technical loophole in the wavelet decomposition process, a ELMD spectral kurtosis joint denoising algorithm based on wavelet packet is proposed. On the basis of the effective PF (Product Function) components decomposed by ELMD, the optimal parameters of spectral kurtosis and the energy distribution of wavelet packets are used to determine the reconstructed nodes of the signal, and the signal denoising of each PF component is completed. Each PF component after denoising can characterize the characteristics of the original signal at different scales. Thirdly, by analyzing the characteristics of pipeline signals, the time-frequency analysis theory is studied, and an adaptive optimal kernel (Adaptive Optimal Kernel,AOK spectral entropy parameter based on time-frequency domain is proposed to quantitatively describe the time-frequency characteristics of the signals. The corresponding AOK parameters are extracted from each PF component to determine whether there is leakage or not and the working conditions of the pipeline are preliminarily determined. It has a good degree of distinction and good recognition accuracy for the normal operation of the pipeline, pipeline leakage and pipe percussion. Finally, the pipeline leak detection algorithm based on ELMD multi-scale correlation is introduced. Through the fusion of the PF component obtained by ELMD decomposition and the cross-correlation algorithm, the delay difference of different characteristic scales is obtained, and the location of pipeline leakage is completed. The algorithm is more accurate than that obtained by correlation calculation using the original signal directly, and it is helpful to improve the location accuracy of pipeline leakage.
【學位授予單位】:東北石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN911.7
【參考文獻】
中國期刊全文數據庫 前10條
1 田野;;基于次聲波的輸氣管道泄漏監(jiān)測系統(tǒng)[J];油氣田地面工程;2016年10期
2 張曉威;劉錦昆;陳同彥;季文峰;馮新;;基于分布式光纖傳感器的管道泄漏監(jiān)測試驗研究[J];水利與建筑工程學報;2016年03期
3 孫潔娣;肖啟陽;溫江濤;王飛;;改進LMD及高階模糊度函數的管道泄漏定位[J];儀器儀表學報;2015年10期
4 孫潔娣;肖啟陽;溫江濤;王飛;;基于LMD包絡譜熵及SVM的天然氣管道微小泄漏孔徑識別[J];機械工程學報;2014年20期
5 王保群;林燕紅;焦中良;;我國天然氣管道現狀與發(fā)展方向[J];國際石油經濟;2013年08期
6 孟令雅;付俊濤;李玉星;劉翠偉;劉光曉;;輸氣管道泄漏音波信號傳播特性及預測模型[J];中國石油大學學報(自然科學版);2013年02期
7 劉小龍;王華;趙淑娥;陳建軍;魏軍;劉強;;自適應最優(yōu)核時頻分布在地震儲層預測中的應用[J];中南大學學報(自然科學版);2012年08期
8 方亮;蘇旭;趙曉龍;;天然氣長輸管道泄漏檢測技術進展[J];化工裝備技術;2012年03期
9 何存富;鄭興強;駱建偉;杭利軍;吳斌;;消偏型Sagnac光纖管道泄漏檢測系統(tǒng)及其穩(wěn)定性研究[J];中國激光;2012年02期
10 范玉生;;小波和小波包變換在心電信號去噪中的應用[J];重慶科技學院學報(自然科學版);2010年01期
中國碩士學位論文全文數據庫 前6條
1 張冉;城市管道燃氣防泄漏監(jiān)測技術研究[D];東華理工大學;2016年
2 胡月;基于負壓波原理的輸油管線泄漏監(jiān)測技術研究[D];長春理工大學;2016年
3 薄瑞瑞;基于LMD的振動信號處理及故障特征提取研究[D];內蒙古大學;2015年
4 段樂崢;基于HHT的供水管道泄漏檢測研究[D];廈門大學;2014年
5 劉盈;基于次聲波的煤氣管道泄漏監(jiān)測系統(tǒng)研究[D];電子科技大學;2010年
6 王久龍;基于紅外成像技術的埋地管道泄漏定位實驗研究[D];大慶石油學院;2008年
,本文編號:2310549
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2310549.html