超寬帶探地雷達多目標壓縮感知成像研究
發(fā)布時間:2018-10-31 17:19
【摘要】:壓縮感知成像要求信號在某個域上能滿足稀疏性要求,地下多目標在空域上降低了信號的稀疏性,導致成像出現(xiàn)散焦和虛像。擴大成像背景保證了稀疏性要求但又使得成像計算量上升,實時性不足。提出一種根據探地雷達回波特征預提取出潛在目標位置的壓縮感知成像方法。通過對數(shù)據進行去噪、滑動矩陣過濾來確定目標的水平位置,再對水平位置處的幾道A-Scan數(shù)據進行極值搜索,從而可以提取出成像區(qū)域目標位置信息,進而在建立成像冗余字典時只需考慮目標位置處的字典元素,無目標處字典元素直接剔除,減少字典建立所需的元素,降低了壓縮感知求解計算量。該方法由于只對潛在目標區(qū)域進行成像,因此在保證成像實時性的同時也保證了成像精度。實驗結果表明算法可行、有效。
[Abstract]:Compression sensing imaging requires that the signal can satisfy the sparsity requirement in a certain domain, and underground multi-targets reduce the sparsity of the signal in the airspace, resulting in defocusing and virtual image of the imaging. The expansion of imaging background ensures sparsity, but it increases the amount of imaging computation, and the real-time performance is insufficient. A compression sensing imaging method based on GPR echo features to extract potential target location is proposed. By de-noising and sliding matrix filtering, the horizontal position of the target is determined, and several A-Scan data at the horizontal position are searched for extremum value, which can extract the position information of the target in the imaging region. Furthermore, only the dictionary elements at the target location should be considered, and the non-target dictionary elements should be eliminated directly in order to reduce the elements needed for the establishment of the dictionary and reduce the computational complexity of the compression perception solution. The method only imaged the potential target area, so it can guarantee the real-time imaging and the imaging accuracy. Experimental results show that the algorithm is feasible and effective.
【作者單位】: 桂林電子科技大學信息與通信學院;西安電子科技大學電子工程學院;
【基金】:國家自然科學基金(61371186) 廣西自然科學基金(2013GXNSFFA019004) 廣西物聯(lián)網技術及產業(yè)化推進協(xié)同創(chuàng)新中心資助項目(WLW20060201)
【分類號】:TN957.52
本文編號:2303012
[Abstract]:Compression sensing imaging requires that the signal can satisfy the sparsity requirement in a certain domain, and underground multi-targets reduce the sparsity of the signal in the airspace, resulting in defocusing and virtual image of the imaging. The expansion of imaging background ensures sparsity, but it increases the amount of imaging computation, and the real-time performance is insufficient. A compression sensing imaging method based on GPR echo features to extract potential target location is proposed. By de-noising and sliding matrix filtering, the horizontal position of the target is determined, and several A-Scan data at the horizontal position are searched for extremum value, which can extract the position information of the target in the imaging region. Furthermore, only the dictionary elements at the target location should be considered, and the non-target dictionary elements should be eliminated directly in order to reduce the elements needed for the establishment of the dictionary and reduce the computational complexity of the compression perception solution. The method only imaged the potential target area, so it can guarantee the real-time imaging and the imaging accuracy. Experimental results show that the algorithm is feasible and effective.
【作者單位】: 桂林電子科技大學信息與通信學院;西安電子科技大學電子工程學院;
【基金】:國家自然科學基金(61371186) 廣西自然科學基金(2013GXNSFFA019004) 廣西物聯(lián)網技術及產業(yè)化推進協(xié)同創(chuàng)新中心資助項目(WLW20060201)
【分類號】:TN957.52
【相似文獻】
相關期刊論文 前10條
1 趙忠海;;探地雷達在地道探測中的應用[J];地質災害與環(huán)境保護;2013年02期
2 羅純哲;陳金杰;王蔚東;;壓縮感知理論與非凸優(yōu)化方法研究[J];無線電工程;2014年05期
3 鄧自立;L算法及其在稀疏性計算中的應用[J];華南工學院學報;1985年01期
4 范志雄;;探地雷達勘察中的干擾與識別[J];貴州地質;2008年02期
5 王光新;林有明;張送保;;SAR圖像數(shù)據稀疏性分析及在特征增強中的應用[J];計算機科學;2011年02期
6 何昭水;謝勝利;傅予力;;信號的稀疏性分析[J];自然科學進展;2006年09期
7 張毅;;探地雷達在公路檢測中的應用技術[J];科技致富向導;2012年30期
8 史兆豐;夏秀渝;;基于語音稀疏性的頻域聲回波對消算法研究[J];四川大學學報(自然科學版);2013年02期
9 陽召成;黎湘;王宏強;;基于空時功率譜稀疏性的空時自適應處理技術研究進展[J];電子學報;2014年06期
10 王國鵬;劉郁林;羅穎光;;基于稀疏性的欠定語音盲分離方法研究[J];計算機應用;2009年04期
相關碩士學位論文 前2條
1 李文昊;基于分數(shù)低階統(tǒng)計量稀疏性的DOA估計[D];大連海事大學;2015年
2 王金洋;基于稀疏性的相位復原研究[D];天津職業(yè)技術師范大學;2016年
,本文編號:2303012
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2303012.html