基于線性收縮和隨機矩陣理論的MIMO雷達目標盲檢測方法
[Abstract]:As a new type of radar system, multi-input multi-output (MIMO) radar has attracted wide attention from scholars at home and abroad. MIMO radar can effectively overcome the disadvantages of traditional radar system and improve the performance of target detection. It has great application prospect. At present, a series of methods have been proposed for MIMO radar target detection, such as Neyman-Pearson detection, generalized likelihood ratio detection and so on. Although they improve the detection performance in varying degrees, they need to know or estimate the noise variance in advance. The target scattering matrix is a non-blind detection method. Moreover, these methods usually assume that the beat number is much larger than the number of matrix elements. In this case, the sample covariance matrix of the received signal can be used as the maximum likelihood estimation of the statistical covariance matrix. With the increasing application of MIMO radar technology, large array system has become an inevitable development trend. In large array systems, the number of array elements can be comparable to the number of beats or even larger than the number of beats. In this case, the distribution interval of eigenvalues of the sample covariance matrix is changed, and the traditional method of target detection is no longer applicable. In order to solve the above problems, the shrinkage estimation technique of high dimensional covariance matrix and the theory of large dimensional random matrix are used to study the blind target detection method of MIMO radar. The research work of this paper is supported by the National Natural Science Foundation of China "MIMO Radar robust Target Detection and estimation based on the large Dimension Random Matrix Theory" (item number: 61371158). The innovative research work of this paper is as follows: for large array MIMO radar systems where the number of array elements and rapid-beat numbers can be comparable, the contraction algorithm of high-dimensional covariance matrix estimation is combined with the theory of large-dimensional random matrix. A new blind target detection method based on linear contraction-standard condition number (LS-SCN) is proposed. By solving the optimization matrix of sample covariance matrix of large dimensional system and using M-P law, the relationship between detection threshold and shrinkage coefficient is derived, and the single object detection algorithm and multi-objective detection algorithm based on LS-SCN are presented respectively. The algorithm does not require prior information such as noise variance, target scattering matrix and target azimuth, so it is insensitive to noise changes and is suitable for large array systems. In view of the lack of rapid-beat number relative to the number of array elements, by analyzing the statistical distribution of linear shrinkage coefficient of echo signal covariance matrix, a blind MIMO radar multi-target detection algorithm based on shrinkage coefficient detection (SCD) is proposed. Furthermore, in order to reduce the computational complexity, the shrinkage coefficient is simplified and the ratio of eigenvalue to moment (EMR) is selected as the detection statistic. A blind detection algorithm for MIMO radar based on EMR is proposed. Simulation results show that the two algorithms can significantly improve the performance of MIMO radar blind detection in the absence of fast beat number. Traditional target detection methods usually only consider the case of ideal white noise, but in practice there will be correlation noise due to coupling between array elements. To solve this problem, a correlation noise model is established, and a blind detection algorithm for MIMO radar targets based on stochastic matrix theory is proposed. In this algorithm, the asymptotic distribution of eigenvalues of the sample covariance matrix is derived by means of multiplicative free convolution S- transform, additive free convolution R- transform and Stieltjes transform, and its decision threshold is calculated by combining the detection idea of standard condition number. In order to achieve the blind detection of MIMO radar under the background of correlated noise.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN958
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 李馨,陳曉蘇,劉立剛;信息隱身術——信息隱藏的盲檢測方法[J];計算機安全;2003年12期
2 劉蓉;霍甲;;信號盲檢測應用情況簡述[J];數(shù)字通信世界;2014年06期
3 張昀;于舒娟;王京;;基于自調節(jié)粒子群算法的盲檢測[J];計算機技術與發(fā)展;2013年11期
4 王偉;方勇;;基于有限差分的置換圖像盲檢測方法[J];電子學報;2010年10期
5 劉潘梅;孫容海;吳建源;;一種新的區(qū)域復制圖像篡改盲檢測技術[J];計算機工程與應用;2012年09期
6 詹雙環(huán);張鴻賓;;基于小波分解和方差分析的圖像信息隱藏盲檢測[J];電子與信息學報;2007年06期
7 韓鵬;楊曉元;唐玉華;;基于一類支持向量機的隱秘圖像盲檢測算法[J];計算機工程與應用;2006年35期
8 平玲娣;劉祖根;史烈;孫康;;基于易變特征實現(xiàn)隱藏信息的盲檢測[J];浙江大學學報(工學版);2007年03期
9 劉燕;劉朝陽;王安義;;一種快速傳輸格式盲檢測的方法[J];數(shù)字通信;2011年03期
10 劉萬賢;彭華;;一種突發(fā)直擴信號盲檢測算法[J];信息工程大學學報;2013年06期
中國重要會議論文全文數(shù)據(jù)庫 前2條
1 阮秀凱;張志涌;;Hopfield神經(jīng)網(wǎng)盲檢測統(tǒng)計信息缺失信號[A];2011年中國智能自動化學術會議論文集(第一分冊)[C];2011年
2 羅向陽;王道順;汪萍;劉粉林;;基于圖像多域特征縮放與BP網(wǎng)絡的信息隱藏盲檢測[A];第七屆全國信息隱藏暨多媒體信息安全學術大會論文集[C];2007年
中國博士學位論文全文數(shù)據(jù)庫 前2條
1 胡玲娜;靜止圖像數(shù)字水印的盲檢測算法研究[D];上海交通大學;2010年
2 呂志勝;基于ENF信號的數(shù)字音頻篡改盲檢測研究[D];華南理工大學;2014年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 呂曉輝;低截獲概率信號的盲檢測與參數(shù)估計[D];電子科技大學;2015年
2 年耀貞;寬帶無線專網(wǎng)中PDCCH信道關鍵技術及性能研究[D];電子科技大學;2015年
3 宋嘯良;量子蟻群優(yōu)化盲檢測系統(tǒng)設計[D];南京郵電大學;2015年
4 徐巧芬;面向圖像高維隱寫特征的盲監(jiān)測算法[D];福州大學;2013年
5 季奎明;改進的Hopfield型神經(jīng)網(wǎng)絡盲檢測算法研究[D];南京郵電大學;2016年
6 李垠;基于線性收縮和隨機矩陣理論的MIMO雷達目標盲檢測方法[D];吉林大學;2017年
7 夏yN;基于量子免疫優(yōu)化的盲檢測算法[D];南京郵電大學;2014年
8 張蓉;含公零點信道的信號盲檢測[D];南京郵電大學;2012年
9 遲旭斌;直接序列擴頻信號的盲檢測和參數(shù)估計方法[D];西安電子科技大學;2014年
10 范樂園;半可逆FIR-MIMO系統(tǒng)多值信號盲檢測[D];南京郵電大學;2014年
,本文編號:2282047
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2282047.html