天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 信息工程論文 >

基于線性收縮和隨機矩陣理論的MIMO雷達目標盲檢測方法

發(fā)布時間:2018-10-19 18:50
【摘要】:多輸入多輸出(MIMO)雷達作為一種新型雷達體制,已受到國內外學者的廣泛關注。MIMO雷達由于能夠有效地克服傳統(tǒng)雷達體制存在的弊端,可以顯著地提高目標的檢測性能,具有巨大應用前景。目前,針對MIMO雷達目標檢測已提出一系列方法,如Neyman-Pearson檢測、廣義似然比檢測等,它們雖不同程度上提高了檢測性能,但需要事先已知或預先估計噪聲方差、目標散射矩陣等信息,屬于非盲檢測方法。而且,這些方法通常假定快拍數(shù)遠遠大于陣元數(shù),此時,接收信號的樣本協(xié)方差矩陣可以作為統(tǒng)計協(xié)方差矩陣的極大似然估計。隨著MIMO雷達技術日益走向應用,大陣列系統(tǒng)已成為一個必然發(fā)展趨勢。在大陣列系統(tǒng)中,陣元數(shù)可以與快拍數(shù)相比擬甚至大于快拍數(shù),此時樣本協(xié)方差矩陣的特征值分布區(qū)間發(fā)生改變,傳統(tǒng)的目標檢測方法不再適用。針對上述問題,本文以高維協(xié)方差矩陣的收縮估計技術和大維隨機矩陣理論為工具,對MIMO雷達的目標盲檢測方法進行了深入研究。本文的研究工作得到國家自然科學基金“基于大維隨機矩陣理論的MIMO雷達穩(wěn)健目標檢測與估計”(項目編號:61371158)的資助。本文的創(chuàng)新性研究工作如下:針對陣元數(shù)與快拍數(shù)可以相比擬的大陣列MIMO雷達系統(tǒng),將高維協(xié)方差矩陣估計的收縮算法與大維隨機矩陣理論相結合,提出一種基于線性收縮-標準條件數(shù)(LS-SCN)的目標盲檢測新方法。通過求解大維系統(tǒng)樣本協(xié)方差矩陣的優(yōu)化矩陣,并利用M-P律,推導出檢測閾值與收縮系數(shù)之間的關系,分別給出了基于LS-SCN的單目標和多目標檢測算法。該算法無需已知噪聲方差、目標散射矩陣和目標方位等先驗信息,對噪聲變化不敏感,且適用于大陣列系統(tǒng)。針對快拍數(shù)相對于陣元數(shù)匱乏的情況,通過分析回波信號協(xié)方差矩陣的線性收縮系數(shù)的統(tǒng)計分布特性,提出一種基于收縮系數(shù)檢測(SCD)的MIMO雷達多目標盲檢測算法。進而,為了降低其計算復雜度,將收縮系數(shù)進行化簡,選取特征值-矩之比(EMR)作為檢測統(tǒng)計量,提出一種基于EMR的MIMO雷達多目標盲檢測算法。仿真結果表明,兩種算法顯著地提高了MIMO雷達在快拍數(shù)匱乏環(huán)境下多目標盲檢測的性能。傳統(tǒng)目標檢測方法通常僅考慮理想白噪聲的情況,而實際中由于陣元間耦合等因素會產(chǎn)生相關噪聲。針對此問題,本文建立了相關噪聲模型,提出一種相關噪聲背景下基于隨機矩陣理論的MIMO雷達目標盲檢測算法。該算法利用乘性自由卷積S-變換、加性自由卷積R-變換以及Stieltjes變換等數(shù)學工具,推導出其樣本協(xié)方差矩陣特征值的漸近分布,結合標準條件數(shù)的檢測思想,計算出其判決閾值,從而實現(xiàn)相關噪聲背景下MIMO雷達的目標盲檢測。
[Abstract]:As a new type of radar system, multi-input multi-output (MIMO) radar has attracted wide attention from scholars at home and abroad. MIMO radar can effectively overcome the disadvantages of traditional radar system and improve the performance of target detection. It has great application prospect. At present, a series of methods have been proposed for MIMO radar target detection, such as Neyman-Pearson detection, generalized likelihood ratio detection and so on. Although they improve the detection performance in varying degrees, they need to know or estimate the noise variance in advance. The target scattering matrix is a non-blind detection method. Moreover, these methods usually assume that the beat number is much larger than the number of matrix elements. In this case, the sample covariance matrix of the received signal can be used as the maximum likelihood estimation of the statistical covariance matrix. With the increasing application of MIMO radar technology, large array system has become an inevitable development trend. In large array systems, the number of array elements can be comparable to the number of beats or even larger than the number of beats. In this case, the distribution interval of eigenvalues of the sample covariance matrix is changed, and the traditional method of target detection is no longer applicable. In order to solve the above problems, the shrinkage estimation technique of high dimensional covariance matrix and the theory of large dimensional random matrix are used to study the blind target detection method of MIMO radar. The research work of this paper is supported by the National Natural Science Foundation of China "MIMO Radar robust Target Detection and estimation based on the large Dimension Random Matrix Theory" (item number: 61371158). The innovative research work of this paper is as follows: for large array MIMO radar systems where the number of array elements and rapid-beat numbers can be comparable, the contraction algorithm of high-dimensional covariance matrix estimation is combined with the theory of large-dimensional random matrix. A new blind target detection method based on linear contraction-standard condition number (LS-SCN) is proposed. By solving the optimization matrix of sample covariance matrix of large dimensional system and using M-P law, the relationship between detection threshold and shrinkage coefficient is derived, and the single object detection algorithm and multi-objective detection algorithm based on LS-SCN are presented respectively. The algorithm does not require prior information such as noise variance, target scattering matrix and target azimuth, so it is insensitive to noise changes and is suitable for large array systems. In view of the lack of rapid-beat number relative to the number of array elements, by analyzing the statistical distribution of linear shrinkage coefficient of echo signal covariance matrix, a blind MIMO radar multi-target detection algorithm based on shrinkage coefficient detection (SCD) is proposed. Furthermore, in order to reduce the computational complexity, the shrinkage coefficient is simplified and the ratio of eigenvalue to moment (EMR) is selected as the detection statistic. A blind detection algorithm for MIMO radar based on EMR is proposed. Simulation results show that the two algorithms can significantly improve the performance of MIMO radar blind detection in the absence of fast beat number. Traditional target detection methods usually only consider the case of ideal white noise, but in practice there will be correlation noise due to coupling between array elements. To solve this problem, a correlation noise model is established, and a blind detection algorithm for MIMO radar targets based on stochastic matrix theory is proposed. In this algorithm, the asymptotic distribution of eigenvalues of the sample covariance matrix is derived by means of multiplicative free convolution S- transform, additive free convolution R- transform and Stieltjes transform, and its decision threshold is calculated by combining the detection idea of standard condition number. In order to achieve the blind detection of MIMO radar under the background of correlated noise.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN958

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 李馨,陳曉蘇,劉立剛;信息隱身術——信息隱藏的盲檢測方法[J];計算機安全;2003年12期

2 劉蓉;霍甲;;信號盲檢測應用情況簡述[J];數(shù)字通信世界;2014年06期

3 張昀;于舒娟;王京;;基于自調節(jié)粒子群算法的盲檢測[J];計算機技術與發(fā)展;2013年11期

4 王偉;方勇;;基于有限差分的置換圖像盲檢測方法[J];電子學報;2010年10期

5 劉潘梅;孫容海;吳建源;;一種新的區(qū)域復制圖像篡改盲檢測技術[J];計算機工程與應用;2012年09期

6 詹雙環(huán);張鴻賓;;基于小波分解和方差分析的圖像信息隱藏盲檢測[J];電子與信息學報;2007年06期

7 韓鵬;楊曉元;唐玉華;;基于一類支持向量機的隱秘圖像盲檢測算法[J];計算機工程與應用;2006年35期

8 平玲娣;劉祖根;史烈;孫康;;基于易變特征實現(xiàn)隱藏信息的盲檢測[J];浙江大學學報(工學版);2007年03期

9 劉燕;劉朝陽;王安義;;一種快速傳輸格式盲檢測的方法[J];數(shù)字通信;2011年03期

10 劉萬賢;彭華;;一種突發(fā)直擴信號盲檢測算法[J];信息工程大學學報;2013年06期

中國重要會議論文全文數(shù)據(jù)庫 前2條

1 阮秀凱;張志涌;;Hopfield神經(jīng)網(wǎng)盲檢測統(tǒng)計信息缺失信號[A];2011年中國智能自動化學術會議論文集(第一分冊)[C];2011年

2 羅向陽;王道順;汪萍;劉粉林;;基于圖像多域特征縮放與BP網(wǎng)絡的信息隱藏盲檢測[A];第七屆全國信息隱藏暨多媒體信息安全學術大會論文集[C];2007年

中國博士學位論文全文數(shù)據(jù)庫 前2條

1 胡玲娜;靜止圖像數(shù)字水印的盲檢測算法研究[D];上海交通大學;2010年

2 呂志勝;基于ENF信號的數(shù)字音頻篡改盲檢測研究[D];華南理工大學;2014年

中國碩士學位論文全文數(shù)據(jù)庫 前10條

1 呂曉輝;低截獲概率信號的盲檢測與參數(shù)估計[D];電子科技大學;2015年

2 年耀貞;寬帶無線專網(wǎng)中PDCCH信道關鍵技術及性能研究[D];電子科技大學;2015年

3 宋嘯良;量子蟻群優(yōu)化盲檢測系統(tǒng)設計[D];南京郵電大學;2015年

4 徐巧芬;面向圖像高維隱寫特征的盲監(jiān)測算法[D];福州大學;2013年

5 季奎明;改進的Hopfield型神經(jīng)網(wǎng)絡盲檢測算法研究[D];南京郵電大學;2016年

6 李垠;基于線性收縮和隨機矩陣理論的MIMO雷達目標盲檢測方法[D];吉林大學;2017年

7 夏yN;基于量子免疫優(yōu)化的盲檢測算法[D];南京郵電大學;2014年

8 張蓉;含公零點信道的信號盲檢測[D];南京郵電大學;2012年

9 遲旭斌;直接序列擴頻信號的盲檢測和參數(shù)估計方法[D];西安電子科技大學;2014年

10 范樂園;半可逆FIR-MIMO系統(tǒng)多值信號盲檢測[D];南京郵電大學;2014年

,

本文編號:2282047

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2282047.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶8edf5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com