基于多幀疊加激光點(diǎn)云的可通行區(qū)域提取研究
[Abstract]:The environment sensing system in driverless is an important part of realizing unmanned driving and the first link of driving safety of driverless vehicle. The passable area is the basic work in the environment sensing system. Based on Velodyne HDL-32E lidar, this paper presents a method and framework for extracting passable region based on multi-frame laser point cloud data. The specific research contents include the following aspects: 1) on the basis of introducing the characteristics and data structure of Velodyne HDL-32E lidar, A framework for extracting passable regions from multi-frame point cloud data is proposed. Firstly, the passable region is extracted from single-frame laser point cloud data, and then the continuous multi-frame data is aligned based on POS data or SLAM algorithm. Finally, based on the extraction results of single frame data, the passable region is extracted again in the aligned point cloud data, and the final results are obtained. 2) the method of extracting passable area from single frame point cloud data is studied. In this paper, a method of extracting passable region based on the angle of continuous points on vertical plane is proposed, and the calculation method of angle threshold of different laser scanning lines is determined. 3) the method of continuous multi-frame point cloud data alignment based on POS and SLAM algorithm is compared and studied. Aiming at the application example of laser point cloud extraction from passable area, a point cloud alignment evaluation method based on principal component analysis (PCA) is proposed. 4) the method of extracting passable area in multi-frame lidar point cloud after alignment is studied in real time. Firstly, the repeat and adjacent points in obstacle point cloud are removed based on voxel (Voxel) method. Then the spatial index is built based on octree in the original point cloud after alignment. Finally, the obstacle points are verified by the height difference of the adjacent points, and the false detection points in the obstacle point cloud are eliminated. It is proved that this method can be used in both urban environment and field environment through the experimental verification of data collected from many real scenes.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 付黎明;李必軍;葉雨同;;基于多尺度重采樣的車道線檢測(cè)[J];電子技術(shù)應(yīng)用;2017年04期
2 張永博;李必軍;陳誠(chéng);;激光點(diǎn)云在無(wú)人駕駛路徑檢測(cè)中的應(yīng)用[J];測(cè)繪通報(bào);2016年11期
3 葉茂勝;李必軍;莫檸鍇;孔格菲;;基于色域差分與伽馬校正的交通燈識(shí)別[J];軟件導(dǎo)刊;2016年09期
4 黃如林;梁華為;陳佳佳;趙盼;杜明博;;基于激光雷達(dá)的無(wú)人駕駛汽車動(dòng)態(tài)障礙物檢測(cè)、跟蹤與識(shí)別方法[J];機(jī)器人;2016年04期
5 潘安;李必軍;;基于Android智能手機(jī)的前方車輛檢測(cè)系統(tǒng)[J];軟件導(dǎo)刊;2016年05期
6 馬飛躍;王曉年;;無(wú)人駕駛汽車環(huán)境感知與導(dǎo)航定位技術(shù)應(yīng)用綜述[J];汽車電器;2015年02期
7 ;2014年中國(guó)智能車未來(lái)挑戰(zhàn)賽在江蘇常熟舉辦[J];工業(yè)控制計(jì)算機(jī);2014年12期
8 李飛;欒學(xué)晨;楊必勝;李秋萍;;高等級(jí)道路網(wǎng)的拓?fù)渥詣?dòng)保持方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年06期
9 欒學(xué)晨;范紅超;楊必勝;李秋萍;;城市道路網(wǎng)主干道提取的形態(tài)分析方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年03期
10 楊必勝;董震;魏征;方莉娜;李漢武;;從車載激光掃描數(shù)據(jù)中提取復(fù)雜建筑物立面的方法[J];測(cè)繪學(xué)報(bào);2013年03期
,本文編號(hào):2265599
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2265599.html