光纖陀螺輸入軸失準(zhǔn)角誤差及補(bǔ)償技術(shù)研究
[Abstract]:As an all-solid-state instrument, fiber optic gyroscope has the characteristics of long life, light weight, small volume, wide dynamic range, wide precision application coverage, anti-impact and so on. It has become an ideal gyroscope instrument in the new generation strapdown inertial navigation system and other applications. With the improvement of the precision of fiber optic gyroscope (fog), the influence of gyroscope misalignment angle and its error becomes more and more prominent. For example, in the static test on the ground, the misalignment error of 1.5-angle will lead to the error of 0.0066 擄/ h, the error of 0.0123 擄/ h and the instability of the scale factor of 0.1ppm. This misalignment error will also lead to the initial alignment error of more than 1 angle and the exponential increase of navigation and positioning error over time in the optical fiber inertial system. Therefore, in order to improve the precision of fiber optic gyroscope, it is necessary to study the error mechanism of gyroscope misalignment and find effective technical solutions. Firstly, the paper theoretically deduces the causes of the error caused by the helically wound optical fiber loop. The analysis shows that the ideal symmetrical winding method can not produce the misalignment angle, and many technological problems are the main causes of the misalignment angle. Reasonable technical measures are beneficial to reduce the misalignment angle of gyroscope in the process of development and production. Temperature, stress release, vibration are the common environmental factors in the application of fiber optic gyroscope (fog) at present. Long-term irradiation will cause uncompensated misalignment (that is, misalignment error). Although short-term irradiation and magnetic field will have a great effect on zero bias and scaling factor, they will not produce misalignment error in the normal range of fog. Secondly, the paper analyzes gyroscope misalignment angle error to zero offset drift test, multi-position zero bias test (used to measure the repeatability of gyroscope bias in different space), scale factor stability, initial alignment, The action mechanism and effect result of the performance index such as navigation and positioning. The analysis shows that the misalignment angle of the input axis and its error will not only seriously affect the navigation accuracy, but also have a great impact on the other performance indexes of the high-precision fiber optic gyroscope. Finally, the paper studies the error suppression of misalignment angle and misalignment angle. In this paper, based on the existing techniques, a compensation method for the temperature error of misalignment angle is proposed. The physical meaning, method error and accurate modeling of the compensation method are deeply studied, and the validity and practicability of the compensation method are proved by experiments. However, the compensation method requires the angular velocity information of three orthogonal axes as the compensation input, so it is not suitable for single-axis fiber optic gyroscopes with independent application. In this paper, a method of compensating the misalignment angle of uniaxial gyroscope by tilting the tail fiber is proposed for the uniaxial rate gyroscope which is used independently. The feasibility of the compensation method is not only proved in the research process, but also the possible problems are analyzed in combination with the engineering practice. In view of the fact that there are still many technical problems to be considered in the realization of the compensation method, the theoretical derivation is only carried out in this paper. In this paper, it is shown that the research on the misalignment angle of gyroscope can not only effectively improve our understanding of the mechanism and error influence of the misalignment angle, but also effectively restrain the misalignment angle and its error of the gyroscope. Improve the application accuracy of high precision fiber optic gyroscope and inertial unit.
【學(xué)位授予單位】:中國航天科技集團(tuán)公司第一研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘欣;劉軍;吳琛;肖程;;扭轉(zhuǎn)抑制光纖陀螺法拉第效應(yīng)的理論研究[J];光學(xué)儀器;2016年06期
2 馬亞平;魏國;周慶東;;改進(jìn)的IMU傳感器安裝誤差正交補(bǔ)償方法[J];傳感器與微系統(tǒng);2016年09期
3 黃云柯;李強(qiáng);胡夢(mèng)純;徐挺;白潔雁;;光纖捷聯(lián)慣性測(cè)量組合熱設(shè)計(jì)及溫度控制技術(shù)[J];上海航天;2016年S1期
4 李巧燕;;應(yīng)用于光纖陀螺的磁屏蔽設(shè)計(jì)研究[J];科技與創(chuàng)新;2015年07期
5 劉軍;肖程;潘欣;殷建玲;魯軍;;抑制光纖陀螺徑向磁敏感性研究[J];中國激光;2015年03期
6 馮卡力;李安;覃方君;;基于多模型分段擬合的光纖陀螺溫度誤差補(bǔ)償方法[J];中國慣性技術(shù)學(xué)報(bào);2014年06期
7 劉云;;基于雙MSP430芯片的光纖陀螺精密溫控系統(tǒng)設(shè)計(jì)[J];科技廣場(chǎng);2014年11期
8 許辰希;吳剛;石春;秦琳琳;岳大志;王超;;光纖陀螺溫度誤差模型研究[J];光學(xué)技術(shù);2014年06期
9 徐宏杰;張文艷;徐小斌;宋凝芳;胡永康;;雙光程光纖陀螺偏振誤差模型與仿真[J];光學(xué)學(xué)報(bào);2014年10期
10 陽明曄;宋章啟;張學(xué)亮;陳宇中;;光纖陀螺輸入軸失準(zhǔn)角的溫度特性[J];國防科技大學(xué)學(xué)報(bào);2014年03期
相關(guān)博士學(xué)位論文 前7條
1 張紅晨;石英保偏光纖在輻照環(huán)境下性能退化規(guī)律與機(jī)理[D];哈爾濱工業(yè)大學(xué);2013年
2 曹通;光纖陀螺捷聯(lián)慣導(dǎo)系統(tǒng)在線對(duì)準(zhǔn)及標(biāo)定技術(shù)研究[D];哈爾濱工程大學(xué);2012年
3 陳世同;高精度光纖陀螺建模及信號(hào)處理技術(shù)研究[D];哈爾濱工程大學(xué);2009年
4 谷宏強(qiáng);光纖陀螺捷聯(lián)慣導(dǎo)系統(tǒng)初始對(duì)準(zhǔn)技術(shù)研究[D];南京理工大學(xué);2009年
5 李東明;捷聯(lián)式慣導(dǎo)系統(tǒng)初始對(duì)準(zhǔn)方法研究[D];哈爾濱工程大學(xué);2006年
6 張志君;基于光纖陀螺的尋北定向技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2005年
7 楊艷娟;捷聯(lián)慣性導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 郭港;光纖陀螺隨機(jī)誤差辨識(shí)及信號(hào)處理技術(shù)研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2016年
2 王超;光纖陀螺隨機(jī)漂移的建模、分析和補(bǔ)償[D];中國科學(xué)技術(shù)大學(xué);2015年
3 曹輝;數(shù)字閉環(huán)光纖陀螺溫度控制與補(bǔ)償?shù)难芯縖D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2013年
4 周成;速率偏頻激光陀螺尋北系統(tǒng)溫度誤差補(bǔ)償方法研究[D];國防科學(xué)技術(shù)大學(xué);2012年
5 王sピ,
本文編號(hào):2262684
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2262684.html