天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

光纖陀螺輸入軸失準(zhǔn)角誤差及補(bǔ)償技術(shù)研究

發(fā)布時(shí)間:2018-10-10 17:36
【摘要】:光纖陀螺儀作為全固態(tài)儀表,具有壽命長、質(zhì)量輕、體積小、動(dòng)態(tài)范圍大、精度應(yīng)用覆蓋面廣、抗沖擊等特點(diǎn),已成為新一代捷聯(lián)慣性導(dǎo)航系統(tǒng)及其它應(yīng)用中較理想的陀螺儀表。隨著光纖陀螺精度的提升,陀螺失準(zhǔn)角及其誤差的影響越發(fā)突出。例如:在地面靜態(tài)試驗(yàn)中,1.5角分的失準(zhǔn)角誤差將會(huì)導(dǎo)致光纖陀螺產(chǎn)生0.0066°/h的零偏測(cè)試誤差、0.0123°/h的零偏位置誤差與0.1ppm的標(biāo)度因數(shù)不穩(wěn)定性。這一失準(zhǔn)角誤差同樣會(huì)導(dǎo)致光纖慣組產(chǎn)生超過1角分的初始對(duì)準(zhǔn)誤差與隨時(shí)間成指數(shù)型增長的導(dǎo)航定位誤差。因此,為了能有效提升光纖陀螺的使用精度,有必要深入開展陀螺失準(zhǔn)角誤差機(jī)理的研究并尋找有效的技術(shù)解決措施。首先,論文理論推導(dǎo)了螺旋繞制的光纖環(huán)導(dǎo)致失準(zhǔn)角及失準(zhǔn)角誤差的產(chǎn)生原因。經(jīng)分析,理想的對(duì)稱繞法不會(huì)產(chǎn)生失準(zhǔn)角,諸多工藝問題是導(dǎo)致失準(zhǔn)角產(chǎn)生的主要原因。合理的改善工藝措施有利于在研制、生產(chǎn)過程中降低陀螺失準(zhǔn)角。當(dāng)前光纖陀螺常見的應(yīng)用環(huán)境因素中,溫度、應(yīng)力釋放、振動(dòng)、長期輻照均會(huì)引起難以補(bǔ)償?shù)氖?zhǔn)角變化(即失準(zhǔn)角誤差);短期輻照與磁場(chǎng)雖然會(huì)對(duì)零偏與標(biāo)度因數(shù)造成較大影響,但在光纖陀螺正常工作的范圍內(nèi)不會(huì)產(chǎn)生失準(zhǔn)角誤差。其次,論文分析了陀螺失準(zhǔn)角誤差對(duì)零偏漂移測(cè)試、多位置零偏測(cè)試(用于衡量陀螺零偏在不同空間位置的重復(fù)性)、標(biāo)度因數(shù)穩(wěn)定性、初始對(duì)準(zhǔn)、導(dǎo)航定位等性能指標(biāo)的作用機(jī)理及影響結(jié)果。通過分析可知,輸入軸失準(zhǔn)角及其誤差不僅會(huì)嚴(yán)重影響導(dǎo)航精度,對(duì)高精度光纖陀螺的其它性能指標(biāo)也會(huì)有較大影響。最后,論文開展了失準(zhǔn)角及失準(zhǔn)角誤差抑制的相關(guān)研究。本文在現(xiàn)有技術(shù)基礎(chǔ)上提出了失準(zhǔn)角溫度誤差的補(bǔ)償方法,對(duì)補(bǔ)償方法的物理意義、方法誤差、精確建模進(jìn)行了深入研究,通過試驗(yàn)證明了該補(bǔ)償方法的有效性與實(shí)用性。但是,該補(bǔ)償方法需要三個(gè)正交軸的角速度信息作為補(bǔ)償輸入,所以不適用于獨(dú)立應(yīng)用的單軸光纖陀螺。針對(duì)獨(dú)立使用的單軸速率陀螺,本文提出了一種利用尾纖傾斜繞制補(bǔ)償單軸陀螺失準(zhǔn)角的方法。在研究過程中不僅證明了該補(bǔ)償方法的可行性,也結(jié)合工程實(shí)際分析了可能遇到的問題。鑒于該補(bǔ)償方法的實(shí)現(xiàn)尚有諸多工藝問題需要考慮,本文僅進(jìn)行理論推導(dǎo)。本文研究表明,全面開展陀螺失準(zhǔn)角的研究工作,不僅可以有效地提高我們對(duì)失準(zhǔn)角產(chǎn)生機(jī)理與誤差影響的認(rèn)識(shí),也可以有效地抑制陀螺失準(zhǔn)角及其誤差,提升高精度光纖陀螺及慣組的應(yīng)用精度。
[Abstract]:As an all-solid-state instrument, fiber optic gyroscope has the characteristics of long life, light weight, small volume, wide dynamic range, wide precision application coverage, anti-impact and so on. It has become an ideal gyroscope instrument in the new generation strapdown inertial navigation system and other applications. With the improvement of the precision of fiber optic gyroscope (fog), the influence of gyroscope misalignment angle and its error becomes more and more prominent. For example, in the static test on the ground, the misalignment error of 1.5-angle will lead to the error of 0.0066 擄/ h, the error of 0.0123 擄/ h and the instability of the scale factor of 0.1ppm. This misalignment error will also lead to the initial alignment error of more than 1 angle and the exponential increase of navigation and positioning error over time in the optical fiber inertial system. Therefore, in order to improve the precision of fiber optic gyroscope, it is necessary to study the error mechanism of gyroscope misalignment and find effective technical solutions. Firstly, the paper theoretically deduces the causes of the error caused by the helically wound optical fiber loop. The analysis shows that the ideal symmetrical winding method can not produce the misalignment angle, and many technological problems are the main causes of the misalignment angle. Reasonable technical measures are beneficial to reduce the misalignment angle of gyroscope in the process of development and production. Temperature, stress release, vibration are the common environmental factors in the application of fiber optic gyroscope (fog) at present. Long-term irradiation will cause uncompensated misalignment (that is, misalignment error). Although short-term irradiation and magnetic field will have a great effect on zero bias and scaling factor, they will not produce misalignment error in the normal range of fog. Secondly, the paper analyzes gyroscope misalignment angle error to zero offset drift test, multi-position zero bias test (used to measure the repeatability of gyroscope bias in different space), scale factor stability, initial alignment, The action mechanism and effect result of the performance index such as navigation and positioning. The analysis shows that the misalignment angle of the input axis and its error will not only seriously affect the navigation accuracy, but also have a great impact on the other performance indexes of the high-precision fiber optic gyroscope. Finally, the paper studies the error suppression of misalignment angle and misalignment angle. In this paper, based on the existing techniques, a compensation method for the temperature error of misalignment angle is proposed. The physical meaning, method error and accurate modeling of the compensation method are deeply studied, and the validity and practicability of the compensation method are proved by experiments. However, the compensation method requires the angular velocity information of three orthogonal axes as the compensation input, so it is not suitable for single-axis fiber optic gyroscopes with independent application. In this paper, a method of compensating the misalignment angle of uniaxial gyroscope by tilting the tail fiber is proposed for the uniaxial rate gyroscope which is used independently. The feasibility of the compensation method is not only proved in the research process, but also the possible problems are analyzed in combination with the engineering practice. In view of the fact that there are still many technical problems to be considered in the realization of the compensation method, the theoretical derivation is only carried out in this paper. In this paper, it is shown that the research on the misalignment angle of gyroscope can not only effectively improve our understanding of the mechanism and error influence of the misalignment angle, but also effectively restrain the misalignment angle and its error of the gyroscope. Improve the application accuracy of high precision fiber optic gyroscope and inertial unit.
【學(xué)位授予單位】:中國航天科技集團(tuán)公司第一研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN96

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 潘欣;劉軍;吳琛;肖程;;扭轉(zhuǎn)抑制光纖陀螺法拉第效應(yīng)的理論研究[J];光學(xué)儀器;2016年06期

2 馬亞平;魏國;周慶東;;改進(jìn)的IMU傳感器安裝誤差正交補(bǔ)償方法[J];傳感器與微系統(tǒng);2016年09期

3 黃云柯;李強(qiáng);胡夢(mèng)純;徐挺;白潔雁;;光纖捷聯(lián)慣性測(cè)量組合熱設(shè)計(jì)及溫度控制技術(shù)[J];上海航天;2016年S1期

4 李巧燕;;應(yīng)用于光纖陀螺的磁屏蔽設(shè)計(jì)研究[J];科技與創(chuàng)新;2015年07期

5 劉軍;肖程;潘欣;殷建玲;魯軍;;抑制光纖陀螺徑向磁敏感性研究[J];中國激光;2015年03期

6 馮卡力;李安;覃方君;;基于多模型分段擬合的光纖陀螺溫度誤差補(bǔ)償方法[J];中國慣性技術(shù)學(xué)報(bào);2014年06期

7 劉云;;基于雙MSP430芯片的光纖陀螺精密溫控系統(tǒng)設(shè)計(jì)[J];科技廣場(chǎng);2014年11期

8 許辰希;吳剛;石春;秦琳琳;岳大志;王超;;光纖陀螺溫度誤差模型研究[J];光學(xué)技術(shù);2014年06期

9 徐宏杰;張文艷;徐小斌;宋凝芳;胡永康;;雙光程光纖陀螺偏振誤差模型與仿真[J];光學(xué)學(xué)報(bào);2014年10期

10 陽明曄;宋章啟;張學(xué)亮;陳宇中;;光纖陀螺輸入軸失準(zhǔn)角的溫度特性[J];國防科技大學(xué)學(xué)報(bào);2014年03期

相關(guān)博士學(xué)位論文 前7條

1 張紅晨;石英保偏光纖在輻照環(huán)境下性能退化規(guī)律與機(jī)理[D];哈爾濱工業(yè)大學(xué);2013年

2 曹通;光纖陀螺捷聯(lián)慣導(dǎo)系統(tǒng)在線對(duì)準(zhǔn)及標(biāo)定技術(shù)研究[D];哈爾濱工程大學(xué);2012年

3 陳世同;高精度光纖陀螺建模及信號(hào)處理技術(shù)研究[D];哈爾濱工程大學(xué);2009年

4 谷宏強(qiáng);光纖陀螺捷聯(lián)慣導(dǎo)系統(tǒng)初始對(duì)準(zhǔn)技術(shù)研究[D];南京理工大學(xué);2009年

5 李東明;捷聯(lián)式慣導(dǎo)系統(tǒng)初始對(duì)準(zhǔn)方法研究[D];哈爾濱工程大學(xué);2006年

6 張志君;基于光纖陀螺的尋北定向技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2005年

7 楊艷娟;捷聯(lián)慣性導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2001年

相關(guān)碩士學(xué)位論文 前10條

1 郭港;光纖陀螺隨機(jī)誤差辨識(shí)及信號(hào)處理技術(shù)研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2016年

2 王超;光纖陀螺隨機(jī)漂移的建模、分析和補(bǔ)償[D];中國科學(xué)技術(shù)大學(xué);2015年

3 曹輝;數(shù)字閉環(huán)光纖陀螺溫度控制與補(bǔ)償?shù)难芯縖D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2013年

4 周成;速率偏頻激光陀螺尋北系統(tǒng)溫度誤差補(bǔ)償方法研究[D];國防科學(xué)技術(shù)大學(xué);2012年

5 王sピ,

本文編號(hào):2262684


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2262684.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2a9e5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com