單載波頻域均衡技術(shù)的研究
[Abstract]:Single carrier frequency domain equalization (Single Carrier Frequency Domain Equalization,SC-FDE) is a technique to resist inter-symbol crosstalk caused by multipath delay in frequency-selective fading channels. Compared with traditional single-carrier time-domain equalization technique, SC-FDE technology has lower computational complexity and is comparable to OFDM (Orthogonal Frequency Domain Modulation) technology because of frequency domain equalization, and SC-FDE technology has lower peak-to-average power compared with multicarrier OFDM technology because of single-carrier transmission. There is no need for expensive linear amplifiers, and the sensitivity to carrier frequency offset is much lower than that of OFDM technology, and the synchronization accuracy is low. Therefore, this technology is widely used in broadband systems, such as the air interface standard IEEE 802.16, the Mobile Broadband Wireless access IEEE802.20 working Group, and the uplink of 3GPP LTE. However, SC-FDE technology also has some shortcomings, its spectrum efficiency is not high, and can not use frequency diversity and so on. In addition, the traditional SC-FDE system can not make full use of multipath diversity in multipath channel, which makes the channel capacity decrease. To solve these problems, researchers proposed the combination of SC-FDE technology and multi-input multiple-output (Multiple-Input Multiple-Output,MIMO) system, and many studies have applied STBC (Space-Time Block Coding) and SFBC (Space-Frequency Block Coding) to SC-FDE system, so that SC-FDE system can obtain spatial diversity. Time diversity and frequency diversity gain. Because the transmitted signal of SC-FDE system is carried out in time domain, SFBC scheme can not be applied directly. In the SC-FDE transmit diversity scheme based on SFBC, it is necessary to transform the time domain signal to the frequency domain by using the Fourier transform (Discrete Fourier Transform,DFT (Discrete Fourier Transform,DFT), and then to design the SFBC using IDFT (Inverse Discrete Transform,IDFT) to transform the encoded signal into the time domain for transmission. This scheme involves multiple Fourier transforms, and its computational complexity is high. The discrete Hartley transform (Discrete Hartley Transform,DHT), which is similar to Fourier transform but with low computational complexity, can be applied to this scheme. In this paper, the technical background and development of SC-FDE are studied, and the fading channel of wireless communication system is analyzed. The SC-FDE system model is established and compared with the OFDM system model. In the SC-FDE system, the STBC and SFBC transmit diversity schemes based on DFT are studied, the theoretical analysis and derivation are carried out, and the simulation results are verified. In order to reduce the computational complexity of the traditional SC-FDE system based on DFT, a SFBC SC-FDE system based on DHT is proposed in this paper. Aiming at the problem that DHT can only modulate real signal and can not directly diagonalize the channel matrix as DFT, this paper gives a detailed description and analysis, and puts forward the corresponding solution. In this scheme, the real part and the imaginary part of the 2-D complex modulation signal are transformed into discrete Hartley transform, then combined, the signal is transformed from time domain to frequency domain, and the SFBC is designed, and the complex DHT modulation signal is realized. The channel matrix is diagonalized by using the complementary characteristic of DHT matrix, and the frequency domain equalization of single tap is realized. Finally, through analysis and simulation, it is proved that compared with the traditional single-carrier frequency-domain equalization system based on Fourier transform, the proposed algorithm can achieve better performance in the case of high SNR. And the complexity of the receiver is reduced by nearly half. In addition, because the forward transformation and inverse transform of discrete Hartley transform are the same transformation, the same hardware and program can be used to realize modulation and demodulation, which reduces the hardware cost of the system.
【學(xué)位授予單位】:大連工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TN911.5
【相似文獻】
相關(guān)期刊論文 前10條
1 唐杰敏;葛萬成;;單載波頻域均衡系統(tǒng)的研究[J];電腦知識與技術(shù)(學(xué)術(shù)交流);2007年20期
2 曹蕾;張欣;楊大成;;頻域均衡聯(lián)合干擾刪除的頻域?qū)崿F(xiàn)方法[J];電子科技大學(xué)學(xué)報;2008年06期
3 施婷婷,周世東,姚彥;時變信道下頻域均衡系統(tǒng)的干擾抑制[J];清華大學(xué)學(xué)報(自然科學(xué)版);2005年03期
4 黃震亞;管云峰;孫軍;;無線信道中的單載波頻域均衡技術(shù)研究[J];通信技術(shù);2007年04期
5 許國平;何維;張欣;楊大成;;重疊剪切法頻域均衡固有誤差分析及其改進方法[J];電子與信息學(xué)報;2008年09期
6 郭瑜暉;孫海信;程恩;袁飛;蒯小燕;;水聲系統(tǒng)單載波頻域均衡方法比較[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2012年05期
7 初寶喜;;單載波寬帶無線系統(tǒng)的頻域均衡[J];中國新通信;2008年06期
8 曹蕾;張欣;楊大成;;頻域均衡聯(lián)合基于能量排序的部分并行干擾刪除檢測算法[J];電子與信息學(xué)報;2008年06期
9 吳江,吳偉陵;未來無線通信中的單載波頻域均衡技術(shù)[J];數(shù)據(jù)通信;2004年05期
10 白文嶺;肖悅;李少謙;;一種低發(fā)射功率的單載波頻域均衡結(jié)構(gòu)[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2009年10期
相關(guān)會議論文 前9條
1 李妍;李勝祖;;單載波頻域均衡對多載波頻分復(fù)用的性能改進[A];中國航海學(xué)會通信導(dǎo)航專業(yè)委員會2005年學(xué)術(shù)年會論文集[C];2005年
2 吳楚懷;唐普英;林艷軍;;一種線性頻域均衡的改進方案[A];2008年中國高校通信類院系學(xué)術(shù)研討會論文集(下冊)[C];2009年
3 成佩茂;劉順蘭;包建榮;;單載波頻域均衡中獨特字類型選擇性能分析[A];浙江省電子學(xué)會2011學(xué)術(shù)年會論文集[C];2011年
4 史鋒旗;董彬虹;李少謙;;下一代移動通信中的單載波頻域均衡技術(shù)[A];2008年中國西部青年通信學(xué)術(shù)會議論文集[C];2008年
5 姜燁;;單載波頻域均衡技術(shù)的研究[A];第22屆全國煤礦自動化與信息化學(xué)術(shù)會議暨第4屆中國煤礦信息化與自動化高層論壇論文集[C];2012年
6 王武軍;梁慶林;;單載波頻域均衡誤碼性能理論分析[A];中國通信學(xué)會第六屆學(xué)術(shù)年會論文集(上)[C];2009年
7 祁淑慧;岳殿武;;空時分組編碼與單載波頻域均衡技術(shù)[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國青年通信學(xué)術(shù)會議論文集(下冊)[C];2007年
8 張國斌;朱琦;酆廣增;;基于IEEE 802.16a標(biāo)準(zhǔn)的單載波頻域均衡系統(tǒng)[A];2003’中國通信學(xué)會無線及移動通信委員會學(xué)術(shù)年會論文集[C];2003年
9 楊志;白文樂;劉澤民;;單載波頻域均衡系統(tǒng)FDE-NP算法的改進[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國青年通信學(xué)術(shù)會議論文集(上冊)[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 杜鵬;新一代移動通信系統(tǒng)關(guān)鍵技術(shù)研究[D];東南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 曾波;低軌衛(wèi)星移動通信單載波頻域均衡研究與實現(xiàn)[D];哈爾濱工業(yè)大學(xué);2016年
2 丁寶祺;基于單載波頻域均衡的水聲協(xié)作檢測技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
3 彭佳琪;單載波頻域均衡系統(tǒng)設(shè)計與實現(xiàn)[D];哈爾濱工業(yè)大學(xué);2016年
4 侯天印;單載波頻域均衡技術(shù)的研究[D];大連工業(yè)大學(xué);2016年
5 江舟;單載波頻域均衡系統(tǒng)中關(guān)鍵技術(shù)的研究與實現(xiàn)[D];同濟大學(xué);2007年
6 張曉輝;基于頻域過采樣的單載波頻域均衡系統(tǒng)關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2012年
7 劉小云;下一代移動通信系統(tǒng)的頻域均衡研究[D];杭州電子科技大學(xué);2010年
8 郭友波;單載波傳輸系統(tǒng)自適應(yīng)頻域均衡研究[D];西安電子科技大學(xué);2005年
9 孫霖楠;短波數(shù)傳中信號的軟信息提取及頻域均衡技術(shù)研究[D];西安電子科技大學(xué);2014年
10 陳微微;基于頻域均衡的協(xié)作通信時延消除方法研究[D];南京郵電大學(xué);2012年
,本文編號:2251876
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2251876.html