一種基于船舶輻射噪聲信號(hào)改進(jìn)Mel倒譜系數(shù)的目標(biāo)識(shí)別方法
[Abstract]:Target type recognition based on Mel frequency cepstrum coefficient (MFCC) of ship radiated noise signal is a hot topic. Although the existing methods have better recognition effect in noise-free environment, the recognition effect is poor when the signal-to-noise ratio (SNR) is low. Based on this, an improved ship target recognition method based on extracting MFCC characteristic parameters is proposed. In the preprocessing stage of ship radiated noise signal, multi-sinusoidal window is used instead of the traditional Hamming window to estimate the multi-window spectrum. The improved MFCC parameters are calculated. The experimental results show that, compared with the MFCC parameters extracted by the traditional method, the MFCC parameters extracted by this method have a higher recognition rate in the BP neural network classifier under the interference of Gao Si white noise with different signal-to-noise ratio (SNR), respectively. The robustness and stability of anti-noise are better.
【作者單位】: 江蘇科技大學(xué)電子信息學(xué)院;
【基金】:國(guó)家自然基金項(xiàng)目(11574120) NSFC通用技術(shù)基礎(chǔ)研究聯(lián)合基金(U1636117)
【分類號(hào)】:U661.44;TN912.34
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前3條
1 陳迪;龔衛(wèi)國(guó);李波;;噪聲魯棒性說(shuō)話人識(shí)別語(yǔ)音高頻加權(quán)MFCC提取[J];儀器儀表學(xué)報(bào);2008年03期
2 吳紅衛(wèi);吳鎮(zhèn)揚(yáng);趙力;;基于多窗譜的心理聲學(xué)語(yǔ)音增強(qiáng)[J];聲學(xué)學(xué)報(bào);2007年03期
3 陸振波,章新華,朱進(jìn);基于MFCC的艦船輻射噪聲特征提取[J];艦船科學(xué)技術(shù);2004年02期
【共引文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 宣傳忠;武佩;張麗娜;馬彥華;張永安;鄔娟;;羊咳嗽聲的特征參數(shù)提取與識(shí)別方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年03期
2 曾以成;陳雨鶯;毛燕湖;謝小娟;;基于經(jīng)驗(yàn)?zāi)B(tài)分解結(jié)合傅氏變換與Wigner分布的Mel頻率倒譜系數(shù)提取[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);2015年02期
3 張賀;沈天飛;滕秋霞;;小詞匯量孤立詞語(yǔ)音識(shí)別系統(tǒng)多種特征組合參數(shù)的選擇方法研究[J];電子測(cè)量技術(shù);2015年03期
4 李響;譚南林;李國(guó)正;郭然;;一種應(yīng)用語(yǔ)音多特征檢測(cè)駕駛疲勞的方法[J];儀器儀表學(xué)報(bào);2013年10期
5 陳冬;李鋼虎;趙亞楠;;基于MVDR的MFCC方法在水下目標(biāo)識(shí)別中的應(yīng)用[J];聲學(xué)與電子工程;2013年03期
6 王s,
本文編號(hào):2249756
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2249756.html