單個(gè)細(xì)胞納米操縱及電信號(hào)檢測(cè)技術(shù)的研究
[Abstract]:Single cell analysis is an interdisciplinary frontier field formed by the infiltration and development of analytical chemistry and biomedicine, and has been paid attention to by a large number of scholars because of its wide application. Cell is the basic unit of life, which can reflect the function and state of organism. The traditional analysis of cell physiological characteristics is based on the statistical analysis of the cell population, but does not pay attention to the differences of individual cells, thus neglecting the important information of the cell. The traditional single cell level physiological characteristics analysis method is simple, and the detection process is cumbersome. In this paper, a robot nanomanipulation system is designed for a single living cell. Atomic force microscope (AFM) is an important research tool in the field of nanotechnology. It has the characteristics of high efficiency, precision and flexibility. It is widely used in biomedicine and other fields. Based on the atomic force microscope (AFM) technology, this paper designs and builds a robot nano-manipulation platform, develops the control program of the system, studies the physiological characteristics of a single living cell, and expands the application function of the system. Aiming at the disadvantage of small scanning range of AFM, a large area scanning function is developed to locate and image a single cell. The mechanical model of cell manipulation was analyzed in detail. The force curve of cardiomyocytes was measured with a single probe, and the cell manipulation was accomplished by using "nano-tweezers" composed of two probes. At the same time, the cardiomyocytes have bioelectrical properties. Conducting probe is used as nano-electrode to measure the action potential of cardiomyocytes. The robot nanomanipulation system designed in this paper can perform morphology, mechanics, electrical signal measurement and localization of single living cell in physiological environment, and can be used to study cell physiology at the single cell level. Pathological process and early clinical diagnosis and treatment of major diseases and drug screening provide new methods.
【學(xué)位授予單位】:長(zhǎng)春理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q2-3;TP242;TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張文曉;胡貞;;基于蟻群算法的原子力探針測(cè)量細(xì)胞的路徑規(guī)劃[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
2 萬(wàn)牡華;歐陽(yáng)健明;;STM、AFM、SEM和TEM對(duì)溶液中納米微粒形貌和粒度分布的檢測(cè)[J];人工晶體學(xué)報(bào);2007年06期
3 徐瑩;余輝;張威;蔡華;劉清君;王平;;基于MEMS技術(shù)的微電極陣列細(xì)胞傳感器[J];自然科學(xué)進(jìn)展;2007年09期
4 程介克;黃衛(wèi)華;王宗禮;;單細(xì)胞分析的研究[J];色譜;2007年01期
5 王浩威,劉曉輝,李銀妹,韓斌,樓立人,王康俊;應(yīng)用光學(xué)微操作技術(shù)分選單條水稻染色體[J];生物物理學(xué)報(bào);2004年01期
6 華杰,徐盛明,徐景明,朱國(guó)才,池汝安,時(shí)文中;原子力顯微鏡測(cè)定力-距離曲線的原理和應(yīng)用[J];金屬礦山;2003年01期
7 孟祥旺,李巖,張書(shū)練,張志誠(chéng);單光刀與單光鑷激光微束系統(tǒng)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年08期
8 劉小虹,顏肖慈,羅明道,李偉;原子力顯微鏡及其應(yīng)用[J];自然雜志;2002年01期
9 劉暌,王紅云,何樂(lè),王忠誠(chéng),張亞卓;胚胎大鼠神經(jīng)干細(xì)胞電生理特性檢測(cè)[J];中華神經(jīng)外科雜志;2001年05期
10 馬全紅,趙冰,張征林,朱爭(zhēng)鳴;原子力顯微鏡中探針與樣品間作用力及AFM的應(yīng)用[J];大學(xué)化學(xué);2000年05期
相關(guān)博士學(xué)位論文 前2條
1 王天星;多參數(shù)心肌細(xì)胞傳感器及其在藥物對(duì)心臟藥效和毒性分析中的應(yīng)用[D];浙江大學(xué);2015年
2 王曉雯;聚電解質(zhì)在固—液界面上的行為[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 孫龍;鈀及其合金納米材料的調(diào)控合成與催化性能、方法研究[D];清華大學(xué);2014年
2 陳茜;基于無(wú)髓神經(jīng)模型傳導(dǎo)阻斷的仿真實(shí)驗(yàn)研究[D];北京交通大學(xué);2014年
3 張盼濤;原子力顯微鏡反饋信號(hào)檢測(cè)技術(shù)研究[D];長(zhǎng)春理工大學(xué);2013年
4 張麗;不同形貌納米四氧化三鈷的液相合成表征及性能研究[D];湖南大學(xué);2012年
,本文編號(hào):2227690
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2227690.html