天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

無線傳感器網(wǎng)絡(luò)在測(cè)風(fēng)塔氣象要素實(shí)時(shí)監(jiān)測(cè)系統(tǒng)中的應(yīng)用

發(fā)布時(shí)間:2018-09-06 14:01
【摘要】:近年來,氣候變化、環(huán)境污染以及世界能源危機(jī)日益加劇,可再生能源的利用和發(fā)展已經(jīng)受到世界各國政府的高度重視,其中風(fēng)電產(chǎn)業(yè)發(fā)展尤其突出。隨機(jī)性很強(qiáng)是風(fēng)的一個(gè)顯著特性,這個(gè)特性使風(fēng)力發(fā)電具有波動(dòng)性、間歇性和隨機(jī)性的特點(diǎn),導(dǎo)致風(fēng)電場(chǎng)發(fā)電功率波動(dòng),對(duì)地區(qū)電網(wǎng)整體運(yùn)行產(chǎn)生了不良影響,進(jìn)而影響到了整個(gè)地區(qū)總網(wǎng)的電壓穩(wěn)定。為了改善和解決風(fēng)力發(fā)電存在的這些問題,風(fēng)電功率預(yù)測(cè)系統(tǒng)應(yīng)運(yùn)而生。該系統(tǒng)根據(jù)風(fēng)電場(chǎng)有關(guān)氣象數(shù)據(jù),利用物理模擬計(jì)算和科學(xué)統(tǒng)計(jì)方法,預(yù)測(cè)出風(fēng)電場(chǎng)的功率,提高了風(fēng)電場(chǎng)與電力系統(tǒng)協(xié)調(diào)運(yùn)行的能力,從而實(shí)現(xiàn)風(fēng)電高效利用和安全入網(wǎng)。目前風(fēng)電場(chǎng)氣象數(shù)據(jù)采用各個(gè)測(cè)風(fēng)塔獨(dú)立采集然后通過GPRS上傳的方式,但由于風(fēng)電場(chǎng)地處偏遠(yuǎn)且面積很大導(dǎo)致GPRS信號(hào)無法全部覆蓋,使得部分測(cè)風(fēng)塔數(shù)據(jù)無法及時(shí)上傳,很大程度上降低了風(fēng)功率預(yù)測(cè)預(yù)報(bào)的準(zhǔn)確性。為了解決上述問題本文設(shè)計(jì)了一個(gè)基于無線傳感器網(wǎng)絡(luò)的測(cè)風(fēng)塔氣象要素實(shí)時(shí)監(jiān)測(cè)系統(tǒng)。論文首先對(duì)測(cè)風(fēng)塔氣象要素監(jiān)測(cè)系統(tǒng)的作用和結(jié)構(gòu)做了介紹,對(duì)本系統(tǒng)所采用的關(guān)鍵技術(shù)和系統(tǒng)的設(shè)計(jì)要點(diǎn)做了深入分析和研究,在此基礎(chǔ)上完成了系統(tǒng)總體設(shè)計(jì)。系統(tǒng)采用ZigBee網(wǎng)絡(luò)將風(fēng)電場(chǎng)區(qū)域的測(cè)風(fēng)塔進(jìn)行組網(wǎng),每個(gè)測(cè)風(fēng)塔上面安裝一個(gè)傳感器模塊用于采集數(shù)據(jù),測(cè)風(fēng)塔之間放置路由節(jié)點(diǎn)將數(shù)據(jù)轉(zhuǎn)發(fā)至網(wǎng)關(guān)模塊,網(wǎng)關(guān)模塊放置在GPRS信號(hào)較好的區(qū)域,用于收集傳感器模塊采集的數(shù)據(jù)并且使用GPRS網(wǎng)絡(luò)將數(shù)據(jù)轉(zhuǎn)發(fā)至中心站。論文對(duì)系統(tǒng)的硬件和軟件做了詳細(xì)設(shè)計(jì)。硬件設(shè)計(jì)包括傳感器模塊和網(wǎng)關(guān)模塊的設(shè)計(jì);兩個(gè)模塊的主體結(jié)構(gòu)采用了STM32和CC2530相結(jié)合的方式,采用CH376模塊為系統(tǒng)增加了數(shù)據(jù)存儲(chǔ)和備份數(shù)據(jù)的功能,采用CC2591模塊大幅增加了系統(tǒng)ZigBee模塊的通信距離,還采用了MAX3485模塊提升了系統(tǒng)的擴(kuò)展能力,并且對(duì)各個(gè)模塊之間的接口電路做了詳細(xì)的設(shè)計(jì)。系統(tǒng)的軟件設(shè)計(jì)主要包括兩部分,一是在Z-Stack協(xié)議棧的應(yīng)用層添加自定義函數(shù)實(shí)現(xiàn)了ZigBee網(wǎng)絡(luò)的數(shù)據(jù)接收和發(fā)送,二是以STM32為硬件平臺(tái)進(jìn)行程序設(shè)計(jì)實(shí)現(xiàn)了數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)存儲(chǔ)和協(xié)議轉(zhuǎn)換等功能。本文設(shè)計(jì)的測(cè)風(fēng)塔氣象要素采集系統(tǒng)具有擴(kuò)展性好、數(shù)據(jù)存儲(chǔ)容量大、適應(yīng)性強(qiáng)、成本低等特點(diǎn),為風(fēng)電預(yù)測(cè)預(yù)報(bào)提供了全面、實(shí)時(shí)的風(fēng)電場(chǎng)氣象數(shù)據(jù),較好地改善了現(xiàn)有系統(tǒng)的性能,提高了風(fēng)電預(yù)測(cè)預(yù)報(bào)的準(zhǔn)確性。
[Abstract]:In recent years, climate change, environmental pollution and the world energy crisis are becoming more and more serious. The utilization and development of renewable energy have been attached great importance by the governments all over the world, especially the development of wind power industry. The strong randomness is a remarkable characteristic of wind, which makes wind power generation have the characteristics of volatility, intermittence and randomness, which leads to the fluctuation of wind farm power generation, which has a negative impact on the whole operation of regional power grid. Then it affects the voltage stability of the whole area network. In order to improve and solve these problems of wind power generation, wind power forecasting system arises at the historic moment. Based on the meteorological data of wind farm, the power of wind farm is predicted by physical simulation calculation and scientific statistical method, which improves the ability of coordinated operation between wind farm and power system, and realizes the efficient utilization of wind power and safe access to network. At present, wind farm meteorological data are collected independently by each wind tower and uploaded through GPRS. However, because of the remote and large area of wind farm, the GPRS signal can not be completely covered, which makes some wind tower data can not be uploaded in time. The accuracy of wind power prediction is greatly reduced. In order to solve the above problems, this paper designs a real-time monitoring system of wind tower meteorological elements based on wireless sensor network. Firstly, the paper introduces the function and structure of the wind tower meteorological element monitoring system, and makes a thorough analysis and research on the key technology and the design key points of the system, and then completes the overall design of the system. The system uses the ZigBee network to network the wind tower in the wind farm area. A sensor module is installed on each wind tower to collect data, and a routing node is placed between the wind towers to transmit the data to the gateway module. The gateway module is placed in the area where the GPRS signal is better. It is used to collect the data collected by the sensor module and forward the data to the central station using the GPRS network. The hardware and software of the system are designed in detail. The hardware design includes the design of sensor module and gateway module, the main structure of the two modules adopts the combination of STM32 and CC2530, and the CH376 module adds the functions of data storage and backup for the system. The communication distance of the system ZigBee module is greatly increased by using CC2591 module, and the extension ability of the system is improved by using the MAX3485 module, and the interface circuit between each module is designed in detail. The software design of the system mainly includes two parts. One is to add the custom function in the application layer of the Z-Stack protocol stack to realize the data receiving and sending of the ZigBee network; the other is to design and implement the data acquisition and data processing based on the STM32 hardware platform. Data storage and protocol conversion and other functions. The wind tower meteorological element acquisition system designed in this paper has the characteristics of good expansibility, large data storage capacity, strong adaptability and low cost. It provides comprehensive and real-time wind farm meteorological data for wind power forecasting and forecasting. The performance of the existing system is improved and the accuracy of wind power forecast is improved.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM614;TP212.9;TN929.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王二偉;丑修建;劉立;張鵬;;基于ZigBee的可自充電式無線溫度傳感監(jiān)測(cè)系統(tǒng)[J];現(xiàn)代電子技術(shù);2017年04期

2 祁力鈞;杜政偉;冀榮華;吳亞壘;曹軍琳;;基于GPRS的遠(yuǎn)程控制溫室自動(dòng)施藥系統(tǒng)設(shè)計(jì)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年23期

3 滕志軍;張明儒;張力;許建軍;;認(rèn)知視角下能量感知的ZigBee網(wǎng)絡(luò)樹型路由優(yōu)化算法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2016年11期

4 路平;劉凱;王龍;;三軸飛行仿真轉(zhuǎn)臺(tái)控制系統(tǒng)設(shè)計(jì)[J];傳感器與微系統(tǒng);2016年09期

5 李麗;劉沖;苗中華;曾力;;基于RS485總線的多變頻器與工控機(jī)互聯(lián)測(cè)試系統(tǒng)[J];測(cè)控技術(shù);2016年07期

6 劉賢鍇;;在ZigBee網(wǎng)絡(luò)中建立虛擬鏈狀網(wǎng)[J];計(jì)算機(jī)應(yīng)用;2016年06期

7 蘇松;胡引翠;盧光耀;董碩;李曉進(jìn);劉長宏;;低功耗藍(lán)牙手機(jī)終端室內(nèi)定位方法[J];測(cè)繪通報(bào);2015年12期

8 楊曉;李戰(zhàn)明;;面向系統(tǒng)級(jí)芯片的串行外設(shè)接口模塊設(shè)計(jì)[J];計(jì)算機(jī)應(yīng)用;2015年12期

9 劉冰;李文書;許參;;利用ZigBee技術(shù)實(shí)現(xiàn)遠(yuǎn)程電力抄表系統(tǒng)[J];測(cè)控技術(shù);2015年10期

10 楊超;魏東;莊俊華;;基于ZigBee無線網(wǎng)絡(luò)技術(shù)的地下車庫照明節(jié)能控制系統(tǒng)研發(fā)[J];電工技術(shù)學(xué)報(bào);2015年S1期

相關(guān)碩士學(xué)位論文 前9條

1 賈宇;基于GPRS的低功耗數(shù)據(jù)采集與傳輸模塊設(shè)計(jì)[D];電子科技大學(xué);2016年

2 司海瑞;基于ARM+GPRS的遠(yuǎn)程無線監(jiān)控系統(tǒng)的研究與開發(fā)[D];南京航空航天大學(xué);2015年

3 陳保站;基于ZigBee的溫室環(huán)境參數(shù)多路監(jiān)控系統(tǒng)[D];西北農(nóng)林科技大學(xué);2014年

4 王心志;基于無線傳感網(wǎng)絡(luò)的礦井監(jiān)測(cè)及救援系統(tǒng)的設(shè)計(jì)[D];哈爾濱理工大學(xué);2014年

5 盧圣才;基于FPGA和STM32的數(shù)字化多道脈沖幅度分析器設(shè)計(jì)[D];成都理工大學(xué);2013年

6 滑潔;小型自動(dòng)氣象儀的設(shè)計(jì)[D];華北電力大學(xué);2012年

7 張曉翟;基于ZigBee的實(shí)驗(yàn)室溫濕度集中監(jiān)測(cè)系統(tǒng)[D];黑龍江大學(xué);2011年

8 洪丹龍;適應(yīng)環(huán)境能量補(bǔ)給的無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)低功耗技術(shù)研究[D];中南大學(xué);2011年

9 戴麗莉;基于ARM的嵌入式USB主機(jī)系統(tǒng)的研究[D];哈爾濱理工大學(xué);2011年



本文編號(hào):2226572

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2226572.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ea10d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com