寬帶可重構(gòu)數(shù)字射頻發(fā)射機(jī)關(guān)鍵技術(shù)研究
[Abstract]:With the rapid development of software radio technology, receiver technology has been very mature at home and abroad, but the research of broadband reconfigurable digital RF transmitter is less. Digital mixer and frequency synthesizer are used directly in broadband reconfigurable digital radio frequency transmitter, which simplifies the complexity of circuit design and debugging brought by using analog devices, and makes the performance of wireless communication system more stable. In this paper, a whole scheme of broadband reconfigurable digital radio frequency transmitter is put forward, and the concrete scheme of digital signal synthesis based on FPGA in this transmitter is analyzed. The digital signal synthesis mainly includes digital up-conversion and signal synthesis at specific frequencies. The key technologies involved in the synthesis are analyzed in detail, such as low pass increment summation modulation, polar coordinate conversion and DDS digital phase modulation. The main results of this study are as follows: 1) the low pass incremental summation modulation technique involved is studied and designed. The modulation technology has the ability of noise reduction and anti-jamming. The first and second order increment summation modulators are modeled by SIMULINK based on MATLAB. The over-sampling rate OSR is all set to 12881 bit quantization. Finally, the simulation results show that the signal-to-noise ratio of the second order modulator is about 99 dB, and that of the first order modulator is about 73 dB, which is close to the value calculated directly from the signal-to-noise ratio formula. At the same time, comparing the spectrum of the two final output signals, the results show that the noise reduction effect of the second order modulator is obviously better than that of the first order, and the signal-to-noise ratio (SNR) is significantly improved by about 26 dB. 2) the polar coordinate conversion technology involved is studied and designed. The polar coordinate transformation of the modulated IQ signal is realized. First, we set the IQs signal as cosine and sine wave of frequency 5 Hz, and then we use MATLAB to simulate the polar diameter r is a constant. Conclusion .3) the DDS digital phase modulation technique is studied and designed to synthesize the signals with phase modulation and required frequency. First, the SIMULINK model is established, and the reference source cf is set to 125 MHz, phase accumulator bit N is 20, and the frequency control word K is selected to be 2 / 15 / 2 / 1 / 13 / 2 / 11 respectively for simulation, and the corresponding signal spectrum is obtained. The signal frequency obtained from the spectrum diagram is about 2.45 ~ 10 ~ 7 rad/s,6.14*10~6rad/s,1.53*10~6 rad/s, respectively, which satisfies the calculation formula of the synthetic signal frequency f _ s _ 0 K f_c/2~N. It is further proved that changing K can adjust the frequency value of the final synthetic signal of the DDS system. Secondly, the frequency of the final synthetic signal of the DDS system can be adjusted when the signal frequency is changed. The SIMULINK modeling and simulation of common 2PSK modulation technology are carried out by keying method and analog method, which lays a foundation for the simulation and verification of DDS digital phase modulation technology. Finally, the SIMULINK model of DDS digital phase modulation technology is established, and each parameter setting is the same as that of the previous DDS system. Taking only K 182 as an example to simulate, the 2PSK signal is output by setting the deflection phase signal of fixed period. The whole scheme of digital up-conversion and signal synthesis in the transmitter is realized in FPGA, finally downloaded to the FPGA development chip, and the output waveform of every key module is observed by using CHIPSCOPE software. The frequency of the output signal is about 21.4 MHz, which is similar to the frequency corresponding to the frequency control word K of 764504178, which verifies the rationality of the whole scheme.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN838
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪靜;單梁;萬實(shí);李軍;;動(dòng)態(tài)可重構(gòu)系統(tǒng)的CAN總線通信系統(tǒng)設(shè)計(jì)[J];工業(yè)控制計(jì)算機(jī);2015年02期
2 唐佑輝;黃騰;邱偉;王成;姚濤;;關(guān)于測(cè)量中平面坐標(biāo)系轉(zhuǎn)換的研究[J];勘察科學(xué)技術(shù);2014年05期
3 劉達(dá);韓曉冰;房龍;;3維直角坐標(biāo)系直接轉(zhuǎn)換算法的研究與實(shí)現(xiàn)[J];測(cè)繪與空間地理信息;2012年05期
4 保玲;佘世剛;周毅;金玉琳;;應(yīng)用于數(shù)字鎖相環(huán)的NCO設(shè)計(jì)[J];電子設(shè)計(jì)工程;2011年14期
5 曾博;楊志坤;;基于0.35μm工藝的Delta-Sigma ADC實(shí)現(xiàn)[J];電子設(shè)計(jì)工程;2010年02期
6 胡漢輝;譚青;;自適應(yīng)抗混疊濾波器在數(shù)據(jù)采集中的應(yīng)用[J];電測(cè)與儀表;2009年09期
7 楊廣琦;;微波毫米波技術(shù)研究與應(yīng)用前沿[J];國際學(xué)術(shù)動(dòng)態(tài);2009年01期
8 趙丹;方繼承;張世杰;于全;;頻率合成器對(duì)跳頻OFDM系統(tǒng)的性能影響分析[J];系統(tǒng)仿真學(xué)報(bào);2006年12期
9 王榮健;TD-SCDMA中軟件無線電技術(shù)的應(yīng)用[J];電信技術(shù);2005年05期
10 崔建鵬,趙敏,江帆;采用DDS技術(shù)實(shí)現(xiàn)的虛擬任意波形發(fā)生器[J];計(jì)算機(jī)測(cè)量與控制;2003年07期
相關(guān)碩士學(xué)位論文 前8條
1 鄭成波;基于SOPC技術(shù)的雷達(dá)數(shù)字接收機(jī)設(shè)計(jì)與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2011年
2 方奇;通信信號(hào)調(diào)制識(shí)別算法研究[D];國防科學(xué)技術(shù)大學(xué);2011年
3 李燕杰;小型多功能電荷校準(zhǔn)儀的設(shè)計(jì)[D];中北大學(xué);2010年
4 胡力堅(jiān);基于DDS的任意波形發(fā)生器設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2009年
5 喻峰;基于FPGA的低相噪DDS的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2007年
6 郭立浩;基于FPGA的直接數(shù)字頻率合成器的研究與應(yīng)用[D];西北工業(yè)大學(xué);2006年
7 薛文;DDS任意波形發(fā)生器的設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2004年
8 李海;DDS綜合調(diào)制器的研究[D];西安電子科技大學(xué);2002年
,本文編號(hào):2219986
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2219986.html