分布式壓力測(cè)試系統(tǒng)中的以太網(wǎng)接口無線通信技術(shù)研究
[Abstract]:Shock wave is an important parameter in the study of weapon and ammunition power, which can provide a powerful basis for the evaluation of damage effectiveness of weapon and ammunition and ground protection. With the rapid development of distributed testing technology and wireless communication technology, distributed stress testing systems based on wireless communication such as ZigBee and Bluetooth have emerged. When the number of test nodes in the explosion field increases, the data capacity increases and the test requirements increase, the wireless data recovery rate after explosion is required to be higher. In view of the above problems, the specific contents of this paper are as follows: first, combining Ethernet communication technology, the wireless communication module of Ethernet interface is applied to the distributed pressure test system. A shock wave pressure test node with wireless communication function is designed. The node is mainly composed of an ICP sensor, a signal conditioning circuit, a signal acquisition and storage circuit, a power supply circuit and so on, which can collect and store the shock wave signals. The collected signal is transmitted to the wireless control terminal through the wireless communication module for subsequent data processing. Secondly, this paper constructs the wireless local area network of distributed stress testing system. The network consists of test nodes, overlay AP, relay AP, access point AP and control terminal. In this network, on the one hand, according to the link budget law, the front end coverage range is predicted, the coverage radius can reach 216 meters, and can be set up quickly in the test site; on the other hand, the distance of wireless communication is increased by increasing wireless relay. The centralized management of the test nodes in the remote test field is realized by the control center. In the experiment, not only the circuit function of the wireless test node and the communication function of the wireless local area network are verified, but also the wireless coverage distance is up to 200 meters, and the lowest wireless data transmission rate can be up to 1200 kbps. On this basis, the channel model of the propagation characteristics of 2.4GHz wireless signal is established, and the logarithmic attenuation model of near-ground electromagnetic wave signal is established with the measured signal. The model shows that the wireless signal will show a logarithmic attenuation trend with the increase of coverage distance. The rationality of the model is verified by the test data in the same environment, that is, the coverage distance of 205 meters obtained by the model is very close to that of the effective coverage distance of 200 meters in the experimental environment. Finally, the remote transmission of the relay is experimented, and the wireless transmission distance reaches 2 km. The Ethernet interface wireless communication system studied in this paper has good stability and reliability, and has certain practical value.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TJ410.6;TP393.11;TN925.93
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜勇;;EtherNet/IP交換機(jī)在工業(yè)以太網(wǎng)中的應(yīng)用[J];硅谷;2012年24期
2 焦新泉;孫英良;焦亞濤;;以太網(wǎng)大容量固態(tài)數(shù)據(jù)記錄器的設(shè)計(jì)[J];電測(cè)與儀表;2010年12期
3 Christian Schlegel;Anton Meindl;Stefan Schonegger;Bhagath Singh Karunakaran;Huazhen Song;Stephane Potier;;五個(gè)主流以太網(wǎng)技術(shù)比較(中)[J];伺服控制;2012年07期
4 Christian Schlegel;Anton Meindl;Stefan Schonegger;Bhagath Singh Karunakaran;Huazhen Song;Stephane Potier;;五個(gè)主流以太網(wǎng)技術(shù)比較(下)[J];伺服控制;2012年08期
5 鄭國(guó)輝;趙立巖;邱軼清;;基于以太網(wǎng)的信號(hào)返回屏數(shù)字顯示系統(tǒng)升級(jí)改造[J];水電自動(dòng)化與大壩監(jiān)測(cè);2010年02期
6 曹躍林;;以太網(wǎng)信號(hào)質(zhì)量問題之收發(fā)器驅(qū)動(dòng)偏置電阻的處理[J];國(guó)外電子測(cè)量技術(shù);2010年03期
7 薛吉;邱浩;奚培鋒;楊帆;;工業(yè)以太網(wǎng)EtherNet/IP介紹及其產(chǎn)品開發(fā)[J];低壓電器;2009年05期
8 葛惠民,丁明軍;基于以太網(wǎng)的數(shù)控設(shè)備聯(lián)網(wǎng)[J];電力自動(dòng)化設(shè)備;2003年12期
9 張鳴;葛惠民;朱荔;;基于以太網(wǎng)的單片機(jī)點(diǎn)對(duì)多控制系統(tǒng)[J];儀表技術(shù)與傳感器;2008年03期
10 劉清;邢晨;郭建明;;基于工業(yè)以太網(wǎng)和OPC技術(shù)的分布式異構(gòu)網(wǎng)絡(luò)控制系統(tǒng)的集成[J];湖南工業(yè)大學(xué)學(xué)報(bào);2007年06期
相關(guān)重要報(bào)紙文章 前10條
1 以太網(wǎng)聯(lián)盟主席 John D'Ambrosia;以太網(wǎng)的未來[N];網(wǎng)絡(luò)世界;2013年
2 華為3Com技術(shù)有限公司 于洋;以太網(wǎng)技術(shù)發(fā)展趨勢(shì)談[N];網(wǎng)絡(luò)世界;2006年
3 本報(bào)記者 范毅波;以太網(wǎng)之路[N];網(wǎng)絡(luò)世界;2001年
4 格林威爾公司;體現(xiàn)運(yùn)營(yíng)價(jià)值的EPON方案[N];通信產(chǎn)業(yè)報(bào);2004年
5 格林威爾公司;EPON接入支撐強(qiáng)大業(yè)務(wù)功能[N];通信產(chǎn)業(yè)報(bào);2004年
6 ;上海貝爾阿爾卡特Speed Touch 520S[N];通信產(chǎn)業(yè)報(bào);2003年
7 謝一楠;同方為智能大廈“添磚加瓦”[N];北京科技報(bào);2002年
8 ;三位一體 整體防范[N];中國(guó)計(jì)算機(jī)報(bào);2003年
9 ;MSTP在網(wǎng)絡(luò)優(yōu)化中的優(yōu)勢(shì)體現(xiàn)[N];通信產(chǎn)業(yè)報(bào);2003年
10 ;攜手撐起大客戶網(wǎng)絡(luò)[N];網(wǎng)絡(luò)世界;2002年
相關(guān)碩士學(xué)位論文 前10條
1 胡海濤;基于以太網(wǎng)與GSM的溫濕度智能監(jiān)控系統(tǒng)[D];貴州大學(xué);2015年
2 馬唯一;基于工業(yè)以太網(wǎng)的汽車轉(zhuǎn)向系統(tǒng)調(diào)試設(shè)備的研究與實(shí)現(xiàn)[D];上海交通大學(xué);2014年
3 張浩鵬;基于電力載波與以太網(wǎng)的煤礦局部排水系統(tǒng)聯(lián)網(wǎng)控制[D];太原理工大學(xué);2016年
4 高明;基于ARM的列車機(jī)務(wù)卡讀卡設(shè)備設(shè)計(jì)與實(shí)現(xiàn)[D];鄭州大學(xué);2016年
5 胡波;以太網(wǎng)與同步串行總線接口設(shè)計(jì)[D];成都理工大學(xué);2016年
6 楊志;分布式壓力測(cè)試系統(tǒng)中的以太網(wǎng)接口無線通信技術(shù)研究[D];中北大學(xué);2017年
7 張璽;基于**公司產(chǎn)品的同步以太網(wǎng)模塊設(shè)計(jì)[D];北京郵電大學(xué);2011年
8 張魯;基于嵌入式ARM的視頻以太網(wǎng)服務(wù)器的設(shè)計(jì)[D];哈爾濱工程大學(xué);2005年
9 李升剛;嵌入式設(shè)備與以太網(wǎng)橋接系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];蘭州大學(xué);2007年
10 朱瑞;基于以太網(wǎng)的電力抄表系統(tǒng)采集器的設(shè)計(jì)[D];杭州電子科技大學(xué);2012年
,本文編號(hào):2219882
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2219882.html