噪聲環(huán)境下基于稀疏表示的說話人識別系統(tǒng)的研究
[Abstract]:Speaker recognition, as a kind of voiceprint recognition technology, has an unlimited prospect in the rapid development of pattern recognition application today. Compared with other recognition methods using personal biological characteristics, it has the advantages of convenient operation and low equipment. Therefore, in recent years, the research on speaker recognition has attracted wide attention. The common model of speaker recognition is Gaussian background mixed model, which is trained according to the general background model. Compared with other models, this model has better robustness, but its computational complexity is large and recognition effect is not satisfactory. Many people have improved on this model. In recent years, sparse representation algorithm is used in signal processing. In addition, sparse representation can be introduced as a classification algorithm into the matching recognition module to improve the speaker recognition system and hope to solve the speaker recognition system through the characteristics of sparse representation. The main work of this paper includes: Firstly, the sparse representation algorithm is introduced into the speaker recognition model, and the matching recognition method of the model is improved by using the classification characteristics of sparse representation. Secondly, in order to satisfy the requirement of sparse representation algorithm, we design the composition of dictionary and use GMM mean hypervector as dictionary atom. Aiming at the problem of large dimension of hypervector, we propose to use Fisher discriminant ratio to compare the classification performance of each dimension of dictionary, and make rules to control dictionary. At the same time, the unit matrix I is added to the dictionary to improve the anti-noise performance of the system. The simulation results show that the sparse representation can be incorporated into the speech model to achieve better recognition efficiency. The I-Fisher algorithm proposed in this paper can not only reduce the dimension of the dictionary, but also improve the recognition and anti-noise performance of the system. T-type is very suitable for testing and training speech in the same environment, that is, the two voices are recorded in the same noise environment, in this condition the recognition effect is very good, but if you want to meet the requirements of various noise environments, you need to train more than one dictionary, the calculation is large. Next, for different noise environments, the recognition rate. According to the principle of MCA morphological component analysis, the speaker dictionary is trained with pure speech, and the sparse representation coefficients can be separated into pure speech coefficients and noise coefficients by adding noise dictionary. In order to get a dictionary that meets the design requirements, we use K-SVD dictionary learning method to train and stitch the two dictionaries separately, and integrate the noise dictionary as part of the speaker dictionary into the large dictionary. Sparse representation decomposition is used to extract and reconstruct the noise contained in the test speech to update the noise dictionary. Simulation results show that the proposed algorithm can effectively reduce the noise pairing between the test speech and the training speech under different ambient noises. In this paper, two recognition models based on sparse representation in noisy environments are proposed, the first dictionary is improved and optimized, and the suitable recognition environment is tested by experiments. The second dictionary design scheme based on noise dictionary is proposed, and the noise dictionary is updated. The method has achieved good recognition effect.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN912.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李懿;劉曉東;;一種新的模糊稀疏表示人臉識別算法[J];大連理工大學(xué)學(xué)報(bào);2017年02期
2 袁安鼎;荊曉遠(yuǎn);吳飛;;基于局部信息融合的正交稀疏保留投影分析[J];計(jì)算機(jī)技術(shù)與發(fā)展;2017年01期
3 錢陽;李雷;;基于新型魯棒字典學(xué)習(xí)的視頻幀稀疏表示[J];計(jì)算機(jī)技術(shù)與發(fā)展;2017年02期
4 周偉力;賀前華;王亞樓;龐文豐;;基于自適應(yīng)逼近殘差的稀疏表示語音降噪方法[J];電子與信息學(xué)報(bào);2017年02期
5 游大濤;李捷;;基于稀疏譜的魯棒說話人識別[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
6 鄧翔宇;劉增力;;基于改進(jìn)的MCA和K-SVD的圖像稀疏表示去噪算法[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
7 王偉;韓紀(jì)慶;鄭鐵然;鄭貴濱;陶耀;;基于Fisher判別字典學(xué)習(xí)的說話人識別[J];電子與信息學(xué)報(bào);2016年02期
8 于云;周偉棟;;基于稀疏表示的魯棒性說話人識別系統(tǒng)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年12期
9 楊龍;陳建明;;語音增強(qiáng)算法及進(jìn)展[J];電聲技術(shù);2015年07期
10 崔曉;;自訓(xùn)練過完備字典和稀疏表示的語音增強(qiáng)[J];現(xiàn)代電子技術(shù);2015年13期
相關(guān)博士學(xué)位論文 前4條
1 謝怡寧;基于稀疏編碼的魯棒說話人識別方法研究[D];哈爾濱理工大學(xué);2016年
2 鮑光照;基于稀疏表示和字典學(xué)習(xí)的語音增強(qiáng)算法研究[D];中國科學(xué)技術(shù)大學(xué);2015年
3 游大濤;基于聽覺機(jī)理的魯棒特征提取及在說話人識別中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2013年
4 宋相法;基于稀疏表示和集成學(xué)習(xí)的若干分類問題研究[D];西安電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 吳婷婷;基于信號稀疏分解的復(fù)雜環(huán)境下說話人識別研究[D];南京理工大學(xué);2015年
2 宋樂;說話人識別中改進(jìn)特征提取算法的研究[D];太原理工大學(xué);2014年
3 曾祺;文本無關(guān)的多說話人確認(rèn)研究[D];電子科技大學(xué);2014年
4 曹殿元;壓縮感知理論及其算法[D];南京郵電大學(xué);2013年
5 李勝濤;基于稀疏表示的人臉識別算法研究[D];湖南大學(xué);2013年
6 汪桃林;基于稀疏表示的短語音說話人識別[D];電子科技大學(xué);2013年
7 沈益青;基于改進(jìn)的匹配追蹤算法的信號稀疏分解[D];浙江大學(xué);2013年
8 曹孝玉;說話人識別中的特征參數(shù)提取研究[D];湖南大學(xué);2012年
,本文編號:2217045
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2217045.html