低可觀測目標(biāo)無源協(xié)同定位技術(shù)研究
[Abstract]:With the rapid development of stealth technology and low altitude penetration technology, radar detection environment is becoming more and more complex, which greatly affects the target detection and tracking performance of active radar. How to detect and track low observable targets in the background of strong clutter has become a key problem to be solved in the field of radar early warning. The passive cooperative positioning system is small in size, quiet in itself and strong in anti-jamming ability. Its spatial distribution can effectively improve the detection performance of the system to low observable targets. It has important military research significance and application value. Based on the passive cooperative positioning system, the detection and tracking of low observable targets is studied in this paper. The main innovations are as follows: firstly, the problem of track initiation and maintenance of single target in passive cooperative positioning system based on two base stations is discussed. A simulated annealing maximum likelihood probability data association algorithm is proposed. The logarithmic likelihood function is constructed by multi-frame measurement accumulation, and the improved simulated annealing algorithm is used to optimize the solution, and the sliding window batch processing technique is used to realize track maintenance. Simulation results verify the effectiveness of the proposed algorithm. Secondly, a multi-base station passive co-location method based on the maximum likelihood probability and multiple assumptions of genetic algorithm is proposed to solve the problem of single structure and poor target detection performance of the dual-base station passive co-location system. The method is optimized by genetic algorithm, and the multi-base station information is fused, and the sliding window batch processing is used to realize track maintenance. Compared with the similar algorithms, the proposed method improves the performance of low observable target detection and tracking significantly. Finally, a multi-target passive co-location method based on quasi-Monte Carlo simulated annealing maximum likelihood probability multi-hypothesis is proposed for multi-target detection and tracking when the number of targets is unknown. In this method, the number of targets is determined by the principle of multiple hypotheses, the initial track is realized by quasi-Monte Carlo simulated annealing, and the track maintenance is realized by sliding window batch processing. Simulation results show that the proposed method can effectively solve the problem of multi-target detection and tracking.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN95
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙勇勝;趙闖;趙擁軍;;利用外輻射源的TDOA和FDOA目標(biāo)定位算法[J];計(jì)算機(jī)工程與應(yīng)用;2017年08期
2 朱穎童;董春曦;劉松楊;董陽陽;趙國慶;;存在觀測站位置誤差的轉(zhuǎn)發(fā)式時(shí)差無源定位[J];航空學(xué)報(bào);2016年02期
3 郭云飛;唐學(xué)大;駱吉安;邵根富;;一種基于QMC-APF的檢測前跟蹤算法[J];現(xiàn)代雷達(dá);2015年02期
4 李程;王偉;施龍飛;王雪松;;基于多源信息融合的有源雷達(dá)組網(wǎng)方式序貫識(shí)別方法[J];電子與信息學(xué)報(bào);2014年10期
5 Li Jing;Zhao Yongjun;Li Donghai;;Accurate single-observer passive coherent location estimation based on TDOA and DOA[J];Chinese Journal of Aeronautics;2014年04期
6 喬梁;;基于外輻射源的多目標(biāo)CMKF跟蹤算法研究[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
7 蔣崢崢;王丹丹;陳曉紅;李一名;;改進(jìn)的模擬退火算法在多目標(biāo)跟蹤中的應(yīng)用研究[J];計(jì)算機(jī)與數(shù)字工程;2013年11期
8 袁述;袁東輝;孫基洲;劉永波;李晶;原琳;;蟻群-遺傳算法在多傳感器多目標(biāo)跟蹤技術(shù)中的應(yīng)用[J];電子學(xué)報(bào);2013年03期
9 楊勇;;基于IEKF的目標(biāo)、外輻射源聯(lián)合跟蹤濾波[J];現(xiàn)代雷達(dá);2013年02期
10 陳志敏;薄煜明;吳盤龍;劉正凡;;擬蒙特卡羅粒子濾波改進(jìn)算法及其在雷達(dá)目標(biāo)跟蹤中的應(yīng)用[J];應(yīng)用科學(xué)學(xué)報(bào);2012年06期
相關(guān)博士學(xué)位論文 前5條
1 黃大羽;復(fù)雜環(huán)境下弱目標(biāo)檢測與跟蹤算法研究[D];華東理工大學(xué);2012年
2 李紅偉;外輻射源雷達(dá)目標(biāo)定位與跟蹤方法研究[D];西安電子科技大學(xué);2012年
3 唐續(xù);外輻射源雷達(dá)目標(biāo)跟蹤技術(shù)研究[D];電子科技大學(xué);2011年
4 楊進(jìn)佩;基于GPS的無源雷達(dá)技術(shù)研究[D];南京理工大學(xué);2006年
5 趙洪立;基于調(diào)頻廣播的無源雷達(dá)系統(tǒng)中微弱目標(biāo)檢測技術(shù)的研究[D];西安電子科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 王順良;外輻射源無源定位與跟蹤研究[D];南京理工大學(xué);2012年
2 林茂;無源聲探測網(wǎng)批處理目標(biāo)跟蹤算法[D];杭州電子科技大學(xué);2010年
3 吳翼虎;外輻射源雷達(dá)目標(biāo)檢測與定位技術(shù)[D];西安電子科技大學(xué);2010年
4 李蕾;盲源分離的極大似然估計(jì)算法研究與應(yīng)用[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號(hào):2213838
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2213838.html