天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

基于局部場電位的動(dòng)物轉(zhuǎn)向解碼研究

發(fā)布時(shí)間:2018-08-28 11:36
【摘要】:運(yùn)動(dòng)行為的神經(jīng)信號(hào)解碼研究是腦-機(jī)接口研究的重要內(nèi)容,解碼生物的運(yùn)動(dòng)意圖,具有重要的理論與實(shí)際應(yīng)用價(jià)值。微電極陣列記錄到的信號(hào)包括鋒電位信號(hào)(spike)和局部場電位信號(hào)(Local field potentials,LFP),關(guān)于spike信號(hào)的運(yùn)動(dòng)解碼研究取得了一定成果,但是隨著電極植入的時(shí)間增長,spike信號(hào)質(zhì)量有所下降,而局部場電位具有長期解碼穩(wěn)定的特點(diǎn),逐漸引起研究人員的關(guān)注。但是,大腦結(jié)構(gòu)復(fù)雜,某一運(yùn)動(dòng)行為的執(zhí)行可能由大腦多個(gè)腦區(qū)共同作用,運(yùn)動(dòng)意圖在腦中的存在時(shí)間非常短暫,采集到的局部場電位為非平穩(wěn)信號(hào),且在記錄的過程中不可避免的會(huì)引入噪聲信號(hào),這些都對解碼特征的有效提取造成一定阻礙。在對大腦信息進(jìn)行解碼時(shí),關(guān)鍵是確定出有效編碼信息的時(shí)間及頻率窗口,提取到利于解碼的特征。本文以鴿子為研究對象,結(jié)合動(dòng)物行為學(xué)方法與神經(jīng)信號(hào)微電極陣列檢測技術(shù),采集了鴿子左轉(zhuǎn)、直行、右轉(zhuǎn)三個(gè)方向轉(zhuǎn)向運(yùn)動(dòng)發(fā)生時(shí)NCL(Nidopallium Caudolaterale)腦區(qū)的LFP信號(hào)。對LFP信號(hào)特征提取方法進(jìn)行分析,探討鴿子運(yùn)動(dòng)轉(zhuǎn)向時(shí)的LFP信號(hào)的特征變化,并用k近鄰(k-Nearest Neighbor,kNN)方法對提取的特征進(jìn)行分類,預(yù)測其運(yùn)動(dòng)方向。主要工作如下:1.對局部場電位信號(hào)的產(chǎn)生過程,局部場電位信號(hào)特性及相關(guān)噪聲特性進(jìn)行了分析,在此基礎(chǔ)上比較了常用處理方法在LFP信號(hào)去噪中的優(yōu)缺點(diǎn),以及常用時(shí)域,頻域時(shí)頻域方法在特征提取方面的優(yōu)缺點(diǎn)。2.采用了一種結(jié)合獨(dú)立成分分析(Independent component analysis,ICA)與小波方法的特征提取方法,ICA方法能夠去除各通道間的數(shù)據(jù)冗余,去除明顯噪聲的同時(shí)對有效編碼信息最大程度的保留,之后利用時(shí)頻特性特較好的小波方法進(jìn)行特征提取,有效提取了運(yùn)動(dòng)轉(zhuǎn)向發(fā)生時(shí)局部場電位的特征。3.完成了鴿子運(yùn)動(dòng)轉(zhuǎn)向行為誘導(dǎo)訓(xùn)練及神經(jīng)信號(hào)采集實(shí)驗(yàn),利用本文的特征提取方法對局部場電位信號(hào)進(jìn)行特征提取,并利用k近鄰方法進(jìn)行分類,正確率最高達(dá)到92.35%。又進(jìn)一步對不同通道,單個(gè)特征,及不同時(shí)間窗提取的特征進(jìn)行分類并統(tǒng)計(jì)正確率,探究比較好的解碼特征形式。
[Abstract]:The study of neural signal decoding of motor behavior is an important part of brain-computer interface research. Decoding biological motion intention has important theoretical and practical application value. The signals recorded by microelectrode array include spike signal (spike) and local field potential signal (Local field potentials,LFP). Some achievements have been made in the study of motion decoding of spike signal, but the quality of spike signal has declined with the time of electrode implantation. The local field potential has the characteristics of long-term decoding stability, and gradually attracted the attention of researchers. However, the structure of the brain is complex, the execution of a certain motor behavior may be affected by multiple brain regions, the duration of the motor intention in the brain is very short, and the local field potential collected is a non-stationary signal. Noise signals will inevitably be introduced in the process of recording, which will hinder the efficient extraction of decoding features. When decoding the brain information, the key is to determine the time and frequency window of the effective coding information, and extract the features that are beneficial to the decoding. In this paper, pigeons were studied. The LFP signals in NCL (Nidopallium Caudolaterale) brain region were collected when pigeons turned left, straight and right, combined with animal behavior method and neural signal microelectrode array detection technique. The feature extraction method of LFP signal is analyzed, and the feature change of LFP signal when pigeon is moving and turning is discussed. The extracted feature is classified by k-nearest neighbor (k-Nearest Neighbor,kNN) method, and its motion direction is predicted. The main work is as follows: 1. The generation process of local field potential signal, the characteristics of local field potential signal and related noise characteristics are analyzed. On this basis, the advantages and disadvantages of common processing methods in LFP signal denoising are compared, as well as the common time domain. The advantages and disadvantages of time-frequency domain method in feature extraction. A new feature extraction method based on Independent component Analysis (Independent component analysis,ICA) and wavelet method is proposed, which can remove the data redundancy between the channels, remove the obvious noise, and keep the effective coding information to the maximum extent. After that, the feature extraction is carried out by wavelet method, which is especially good in time-frequency characteristic, and the feature of local field potential at the time of motion turn is extracted effectively. 3. The training of pigeon movement steering behavior and the experiment of nerve signal acquisition were completed. The feature extraction method of this paper was used to extract the feature of local field potential signal, and the k-nearest neighbor method was used to classify the local field potential signal. The highest correct rate was 92.35%. Furthermore, the features extracted from different channels, single features and different time windows are classified and the correct rate is counted to explore the better decoding feature form.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN911.7

【相似文獻(xiàn)】

相關(guān)期刊論文 前2條

1 尚志剛;馮平艷;劉新玉;牛曉可;萬紅;;局部場電位γ頻帶能量對朝向調(diào)諧特性研究[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2012年06期

2 ;[J];;年期

相關(guān)會(huì)議論文 前6條

1 楊岸超;劉煥光;陳寧;喬慧;白勤;張建國;;海仁酸致癇大鼠丘腦前核局部場電位研究[A];2011中華醫(yī)學(xué)會(huì)神經(jīng)外科學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2011年

2 何偉;李亮;賁卉;高昕妍;榮培晶;朱兵;;微電極陣列記錄耳針對癲癇大鼠行為學(xué)和場電位的影響[A];2011中國針灸學(xué)會(huì)年會(huì)論文集(摘要)[C];2011年

3 張昊;房敏;蔣詩超;艾健;程艷彬;呂寧;張玉秋;;推拿重手法對大鼠對側(cè)脊髓背角C-纖維誘發(fā)場電位及痛行為的影響[A];中國神經(jīng)科學(xué)學(xué)會(huì)第十屆全國學(xué)術(shù)會(huì)議論文摘要集[C];2013年

4 王曉暉;楊威;原麗;李少鳳;楊東;潘艷芳;祁金順;;大鼠在體海馬CA1區(qū)場電位引導(dǎo)新技術(shù)——刺激/記錄/給藥一體化裝置的開發(fā)和應(yīng)用[A];中國生理學(xué)會(huì)第23屆全國會(huì)員代表大會(huì)暨生理學(xué)學(xué)術(shù)大會(huì)論文摘要文集[C];2010年

5 吳江;舒丹;胡祁生;;電刺激坐骨神經(jīng)誘發(fā)不同發(fā)育階段大鼠脊髓背角場電位長時(shí)程增強(qiáng)現(xiàn)象[A];湖北省生理學(xué)會(huì)2007年度年會(huì)暨學(xué)術(shù)報(bào)告會(huì)論文集[C];2007年

6 徐淑梅;鄭開俊;何津巖;仇曉菁;林來祥;;柴胡對癲癇模型電活動(dòng)的調(diào)制[A];2001’全國藥用植物與中藥院士論壇及學(xué)術(shù)研討會(huì)論文集[C];2001年

相關(guān)博士學(xué)位論文 前1條

1 馬曉宇;內(nèi)側(cè)隔核神經(jīng)元調(diào)制海馬場電位節(jié)律[D];華東師范大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 巢珍;基于光學(xué)成像和神經(jīng)電生理的腦功能研究[D];上海大學(xué);2015年

2 郭寶強(qiáng);基于Comsol的腦電信號(hào)分析模型的研究與應(yīng)用[D];河北工業(yè)大學(xué);2015年

3 董芳芳;基于局部場電位的動(dòng)物轉(zhuǎn)向解碼研究[D];鄭州大學(xué);2016年

4 周立;基于局部場電位的腦機(jī)接口技術(shù)研究[D];浙江大學(xué);2010年

5 劉加加;基于自適應(yīng)濾波的局部場電位響應(yīng)特征分析[D];鄭州大學(xué);2014年

6 孫雷;小腦皮質(zhì)顆粒與分子層對面部刺激反應(yīng)的場電位特征[D];延邊大學(xué);2014年

7 王疆;海馬腦片誘發(fā)場電位的分析處理及其應(yīng)用[D];浙江大學(xué);2001年

8 陳靜雅;時(shí)變自回歸模型在清醒大鼠局部場電位特征分析中的應(yīng)用[D];鄭州大學(xué);2014年

9 蘭東軍;基于EMD和互信息的局部場電位響應(yīng)調(diào)諧特性分析[D];鄭州大學(xué);2014年

10 魏依娜;基于動(dòng)物實(shí)驗(yàn)的腦—機(jī)接口研究—信號(hào)分析[D];浙江大學(xué);2007年

,

本文編號(hào):2209279

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2209279.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶015ad***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com