植入式醫(yī)療器械中的差分分形天線研究
[Abstract]:Implantable medical devices can obtain the relevant data of human physiological parameters more accurately and conveniently than external devices. Therefore, the application of implantable medical devices in the field of medical diagnosis, monitoring and treatment has attracted more and more attention. Implantable antenna is the key device for wireless communication of implantable medical devices to realize wireless transmission of physiological and medical data collected by medical sensors to the receiving equipment in vitro. Due to the special working environment of the implanted antenna, it presents new challenges to the reduction of antenna size, the improvement of anti-jamming ability and the prolongation of service life. This paper is supported by the National Natural Science Foundation of China (61372008) and the Guangdong Science and Technology Project (2014A010103014A2015B010101006). The main work of this research is as follows: the special working environment of the implanted antenna requires us to take the human body's influence into account when we design the antenna at the beginning. In this study, the simple human body model and the high precision human body model were established respectively. (1) the differential fractal implanted antenna working in the MICS band: the differential feed technology enables the antenna to be directly and directly implanted with the implanted medicine. (1) the differential Fractal Implant Antenna working in the MICS band. A differential circuit link in a therapeutic device, The suppression ability of common-mode noise is improved. The antenna is miniaturized by means of fractal curve and high dielectric constant substrate. The size of antenna is 9.3 脳 9.3 脳 0.635 mm3.. The antenna covers the (MICS) band of medical and implantable communications services with a bandwidth of 67 MHz (374,441 MHz).) In this paper, the process of high precision modeling of human body is introduced, and the far-field gain of antenna and the specific absorptivity (SAR) value related to human safety are analyzed. In order to further reduce the power consumption of the implanted device and prolong its life cycle, this paper based on the single frequency antenna, An implantable dual-frequency antenna is designed through improved and optimized research. (2) the differential fractal dual-frequency antenna used in implantable medical devices: the antenna covers the MICS band and the 2.44GHz industrial, scientific and medical (ISM) band. The dual-frequency characteristic of the antenna allows the implanted device to enter sleep mode to reduce power consumption. When communication is needed, a wake-up signal can be sent through the ISM band to enable the device to enter working mode. In this paper, the working principle of antenna is analyzed, the parameters of quantitatively studying antenna noise suppression ability are given, and the principle of antenna obtaining high noise suppression ability is analyzed. The influence of key parameters on antenna performance is studied. The radiation performance of antenna and the link budget to evaluate antenna communication performance are analyzed. The antenna is fabricated, and the measurement results are in good agreement with the simulation results, which verify the accuracy of the theoretical design. (3) differential implanted dual-band wideband fractal antenna: because of the antenna implanted into different electrical characteristics of the tissue will produce frequency offset, In order to improve the robustness of the implanted antenna and reduce the influence of frequency offset on its performance, this paper extends the bandwidth of the antenna by realizing near the double resonant frequency point. The bandwidth of the antenna in the MICS and ISM bands is 22. 1% and 41. 1%, respectively. In this paper, the evolution process of the antenna, the relative size of the antenna, the gain SAR and other parameters are analyzed. The relationship between the input power of the antenna and the maximum communication rate is studied, and the temperature distribution of the human body when the antenna works at the desired communication rate is given. The results show that differential antenna plays an important role in improving system integration, suppressing common-mode noise and reducing power consumption. Fractal structure has obvious advantages in antenna miniaturization. The research of differential fractal antenna can further improve the integration and noise suppression ability of the system, reduce the power consumption of the system, and reduce the size of the antenna.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN822;TH789
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉嘉;孫英杰;;“植入式”教育培訓(xùn)模式初探[J];中國(guó)電力教育;2009年20期
2 鄭敬;;神經(jīng)袖套電極的募集數(shù)據(jù):可植入式刺激器設(shè)計(jì)的參考規(guī)范[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1989年06期
3 樓正國(guó);周玲;;植入式遙測(cè)和電源[J];遙測(cè)遙控;1990年02期
4 王保華;王承華;;體內(nèi)植入電子系統(tǒng)(八) 第八講 植入式遙測(cè)系統(tǒng)(一)[J];中國(guó)醫(yī)療器械雜志;1990年06期
5 陳其成;;植入式裝置的體內(nèi)外雙向通信方式[J];電子世界;2012年24期
6 王保華;袁沖明;;體內(nèi)植入電子系統(tǒng)(二)[J];中國(guó)醫(yī)療器械雜志;1989年06期
7 王保華;;體內(nèi)植入電子系統(tǒng)(一)[J];中國(guó)醫(yī)療器械雜志;1989年05期
8 韋曉娟;劉靜;周一欣;;人體動(dòng)能驅(qū)動(dòng)的可植入式電磁感應(yīng)供電方法研究[J];科技導(dǎo)報(bào);2009年06期
9 沙洪;王妍;任超世;;用于動(dòng)物實(shí)驗(yàn)的植入式神經(jīng)刺激器[J];生物醫(yī)學(xué)工程與臨床;2006年S1期
10 高躍明;潘少恒;麥炳源;韋孟宇;杜民;;植入式醫(yī)學(xué)傳感器體內(nèi)通信的建模與分析[J];儀器儀表學(xué)報(bào);2012年12期
相關(guān)會(huì)議論文 前5條
1 田運(yùn)濤;高躍明;潘少恒;麥炳源;韋孟宇;杜民;;骨骼對(duì)植入式人體通信傳輸特性的影響[A];2012醫(yī)療儀器與民眾健康學(xué)術(shù)研討會(huì)論文集[C];2012年
2 李路明;郝紅偉;;植入式神經(jīng)刺激器的研究應(yīng)用現(xiàn)狀與發(fā)展趨勢(shì)[A];自主創(chuàng)新與持續(xù)增長(zhǎng)第十一屆中國(guó)科協(xié)年會(huì)論文集(3)[C];2009年
3 呂學(xué)士;;用于可植入式醫(yī)療電子的無(wú)線CMOS SoCs[A];中國(guó)儀器儀表學(xué)會(huì)醫(yī)療儀器分會(huì)2010兩岸四地生物醫(yī)學(xué)工程學(xué)術(shù)年會(huì)論文集[C];2010年
4 陸才德;吳勝東;黃靜;裘豐;虞偉明;華永飛;盧長(zhǎng)江;彭濤;楊志豐;;植入式胰胃吻合術(shù)臨床應(yīng)用探討:75例報(bào)告[A];2012年浙江省外科學(xué)學(xué)術(shù)年會(huì)論文集[C];2012年
5 池菊芳;郭航遠(yuǎn);彭放;周研;唐偉良;;家庭監(jiān)測(cè)在植入式心臟電子裝置中的應(yīng)用[A];中華醫(yī)學(xué)會(huì)第十五次全國(guó)心血管病學(xué)大會(huì)論文匯編[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 王雅麗;心動(dòng)也能行動(dòng)[N];中國(guó)計(jì)算機(jī)報(bào);2007年
2 徐錚奎;植入式神經(jīng)調(diào)節(jié)器發(fā)展前景可觀[N];中國(guó)醫(yī)藥報(bào);2007年
3 季偉;植入式傳播“暗渡陳倉(cāng)”[N];醫(yī)藥經(jīng)濟(jì)報(bào);2007年
4 徐錚奎;型植入式神經(jīng)調(diào)節(jié)器可無(wú)線充電[N];醫(yī)藥經(jīng)濟(jì)報(bào);2007年
5 張化;植入式隱形眼鏡[N];經(jīng)濟(jì)參考報(bào);2003年
6 徐錚奎 編譯;電子新技術(shù)催生植入式微型神經(jīng)調(diào)節(jié)器[N];中國(guó)醫(yī)藥報(bào);2007年
7 徐錚奎 編譯;貴金屬研究促植入式醫(yī)療器械發(fā)展[N];中國(guó)醫(yī)藥報(bào);2007年
8 國(guó)訊;關(guān)注心臟血管內(nèi)支架及植入式心臟起搏器使用風(fēng)險(xiǎn)[N];中國(guó)醫(yī)藥報(bào);2013年
9 徐錚奎;啟動(dòng)刺激 終止病痛[N];醫(yī)藥經(jīng)濟(jì)報(bào);2007年
10 本報(bào)特約撰稿 徐錚奎;植入式微電極類產(chǎn)品市場(chǎng)空間巨大[N];醫(yī)藥經(jīng)濟(jì)報(bào);2014年
相關(guān)博士學(xué)位論文 前2條
1 劉昌榮;植入式天線在生物醫(yī)療中的應(yīng)用研究[D];電子科技大學(xué);2015年
2 芮岳峰;基于柔性MEMS的可植入人工面神經(jīng)技術(shù)研究[D];上海交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 張子健;植入式血糖傳感器標(biāo)簽數(shù)字基帶處理器設(shè)計(jì)[D];復(fù)旦大學(xué);2014年
2 湯辰飛;基于磁共振人體植入式無(wú)線傳能系統(tǒng)研究[D];中國(guó)海洋大學(xué);2015年
3 彭張柱;人體植入式無(wú)線傳能及其智能充電管理系統(tǒng)的研究[D];中國(guó)海洋大學(xué);2015年
4 李方紅;人體植入式電子設(shè)備無(wú)線傳能系統(tǒng)中的電磁輻射安全性研究[D];中國(guó)海洋大學(xué);2015年
5 梁偉;植入式心臟起搏器安全性風(fēng)險(xiǎn)評(píng)價(jià)及控制措施研究[D];北京理工大學(xué);2015年
6 劉輝;植入式醫(yī)療器械中的差分分形天線研究[D];華南理工大學(xué);2016年
7 吳澤濤;用于移動(dòng)醫(yī)療的植入式人體天線研究[D];華南理工大學(xué);2016年
8 朱澤t,
本文編號(hào):2209066
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2209066.html