動態(tài)背景下自適應(yīng)LOBSTER算法的前景檢測
[Abstract]:Objective foreground detection is one of the key points in the field of video surveillance. The LOBSTER (local binary similarity segmenter) algorithm combines the Vi Be (visual background extractor) algorithm with the LBSP (local binary similarity patterns) feature, and it has excellent detection performance in the general scene. However, the LOBSTER algorithm has poor adaptability in dynamic background and more detection noise. To solve the above problems, an improved LOBSTER algorithm is proposed. Methods in the phase of model initialization, the LBSP eigenvalues of each pixel were calculated, and the gray value and LBSP eigenvalue of each pixel were added to the color background model and LBSP background model of each pixel respectively, which enhanced the description ability of the background model. In the pixel classification phase, the threshold of each pixel in color background model and LBSP background model is adjusted adaptively according to the background complexity to reduce the noise in the foreground. The updating strategy of each pixel background model is adaptively adjusted according to the background complexity to improve the adaptability of the background model to the dynamic background. Results compared with Vi Be algorithm and LOBSTER algorithm, the foreground image of this algorithm is much lower than that of Vi Be algorithm and LOBSTER algorithm. In this paper, the PCC index of this algorithm is 0.7367.56 higher than that of Vi Be algorithm in different video libraries, and 0.77% higher than that of LOBSTER algorithm. The PCC index of this algorithm is less than that of Vi Be algorithm and LOBSTER algorithm. Conclusion the simulation results show that the proposed algorithm can detect less noise than Vi Be algorithm and LOBSTER algorithm in dynamic background, and has higher accuracy and robustness.
【作者單位】: 江南大學(xué)物聯(lián)網(wǎng)工程學(xué)院;
【分類號】:TP391.41;TN948.6
【參考文獻】
相關(guān)期刊論文 前5條
1 任典元;王文偉;馬強;;基于顏色和局部二值相似模式的背景減除[J];計算機科學(xué);2016年03期
2 宋志勤;路錦正;聶詩良;;改進的時空背景差分目標(biāo)檢測[J];光電工程;2016年02期
3 陳星明;廖娟;李勃;陳啟美;;動態(tài)背景下基于改進視覺背景提取的前景檢測[J];光學(xué)精密工程;2014年09期
4 錢生;張陳斌;陳宗海;王智靈;;基于生物視覺特性的背景減除算法[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2014年04期
5 蘇延召;李艾華;姜柯;金廣智;;改進視覺背景提取模型的運動目標(biāo)檢測算法[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2014年02期
【共引文獻】
相關(guān)期刊論文 前10條
1 瞿中;黃曉凌;;一種用于消除偽影的增強視覺背景提取算法[J];計算機科學(xué);2017年04期
2 陳樹;丁保闊;;動態(tài)背景下自適應(yīng)LOBSTER算法的前景檢測[J];中國圖象圖形學(xué)報;2017年02期
3 于明;劉帥;師碩;;改進的ViBe運動目標(biāo)檢測算法[J];河北工業(yè)大學(xué)學(xué)報;2017年01期
4 齊悅;曹銳;;改進視覺背景提取ViBe算法的目標(biāo)檢測[J];計算機工程與應(yīng)用;2016年23期
5 趙樹言;路艷雪;韓曉霞;;基于最近鄰域像素梯度的視頻背景快速提取[J];計算機應(yīng)用;2016年08期
6 張過;;衛(wèi)星視頻處理與應(yīng)用進展[J];應(yīng)用科學(xué)學(xué)報;2016年04期
7 潘t,
本文編號:2208597
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2208597.html